
Guides Keycloak Server
Version 20.0, 2024-01-03

Welcome to the Keycloak serve guide.

1

Configuring Keycloak
This guide explains the configuration methods for Keycloak and how to start and apply the
preferred configuration. It includes configuration guidelines for optimizing Keycloak for faster
startup and low memory footprint.

Configuration Sources for Keycloak
Keycloak loads the configuration from four different configuration sources:

• command-line parameters

• environment variables

• user-created .conf file

• keycloak.conf file located in the conf directory.

Configuration sources have a descending ordinal: command-line parameters take precedence over
environment variables. Environment variables take precedence over options set by using a specific
configuration file. Options from a specific config file take precedence over options defined in
conf/keycloak.conf. When the same configuration key is found in multiple configuration sources,
the applied value is taken from the configuration source with the highest ordinal.

Example: Configuring the db-url-host parameter.

Source Format

CLI --db-url=cliValue

Environment Variable KC_DB_URL=envVarValue

Configuration file db-url=confFileValue

In the example above, the db-url value is set in all three configuration sources. The actual value
that is used at startup would be the cliValue. If --db-url=cliValue is not used, the used value would
be KC_DB_URL=envVarValue, and last but not least the db-url=confFileValue would be used when no
environment variable with the same Key is present. When this value is specified in a user defined
configuration file and in conf/keycloak.conf, the value from the user defined configuration file
takes precedence.

Configuration Format
The configuration follows a "unified-per-source" format, that is easily translatable from one
configuration source to another:

Command-line parameter format

Values for the command-line are following the --<key-with-dashes>=<value> format. For some
values, there’s also a -<abbreviation>=value shorthand.

Environment variable format

2

Values for environment variables are following the uppercased KC_<key_with_underscores>=<value>
format.

Configuration file format

Values that go into the configuration file are following the <key-with-dashes>=<value> format.

You can easily translate a Key/Value pair from one configuration source to the other.

You will find the relevant configuration options for a specific guide in all three formats on the table
at the bottom of each guide. You can find all available options at the All configuration guide.

The configuration source and the corresponding format you should use is use-case specific.

Example - Configure db-url-host on different configuration sources:

The following example shows how the configuration for the db url host looks for all three
configuration sources:

command-line parameter

bin/kc.[sh|bat] start --db-url-host=mykeycloakdb

environment variable

export KC_DB_URL_HOST=mykeycloakdb

conf/keycloak.conf

db-url-host=mykeycloakdb

Using environment variables for configuration values

It is possible to use placeholders to resolve an environment specific value from environment
variables inside the keycloak.conf file by using the ${ENV_VAR} syntax:

db-url-host=${MY_DB_HOST}

To specify a fallback value in case the environment variable can not be resolved, use a ::

db-url-host=${MY_DB_HOST:mydb}

Configuring the server using a specific configuration file

By default, the server always fetches configuration options from the conf/keycloak.conf file. For a
new installation, this file holds only commented settings as an idea of what you want to set when
running in production.

3

You can also specify an explicit configuration file location using the [-cf|--config-file] option by
invoking the following command:

bin/kc.[sh|bat] --config-file=/path/to/myconfig.conf start

Using the command-line help

Keycloak is packed with a CLI that helps you to configure Keycloak. To find out about the available
configuration, invoke the following command:

bin/kc.[sh|bat] start --help

Alternatively, you can find all server options at the All configuration guide.

Using raw Quarkus properties

In most cases, the available configuration options should suffice to configure the server. However,
you might need to use properties directly from the underlying Quarkus framework to enable a
specific behavior or capability that is missing in the keycloak configuration.

If possible, avoid using properties directly from Quarkus. These are considered unsupported by
Keycloak. If your need is essential, consider opening an enhancement request first and help us to
improve Keycloak’s configuration to fit your needs.

If that’s not possible, you can configure the server using raw Quarkus properties:

• Create a quarkus.properties file in the conf directory and define any property you need.

For a complete list of Quarkus properties, see the Quarkus documentation. Be aware that Keycloak
uses a subset of quarkus extensions, so not all properties will be available.

When a quarkus property is a runtime property (no lock icon shown in the quarkus guide), it is also
handled as runtime property for Keycloak. When a quarkus property is a build time property, you
have to invoke a build for the property to be applied. See the sections below for further information
around the build command.

Note that some quarkus properties are mapped by the Keycloak configuration, for example
quarkus.http.port and similar properties that are needed to configure Keycloak. If the property is
used by Keycloak, defining the same underlying property key in quarkus.properties will have no
effect, as the keycloak configuration value takes precedence over the quarkus property value.

Starting Keycloak
Keycloak can be started in two operating modes, development mode and production mode. Both modes
offer a different set of defaults for the environment they are intended to be used.

4

https://github.com/keycloak/keycloak/issues/new?assignees=&labels=kind%2Fenhancement%2Cstatus%2Ftriage&template=enhancement.yml
https://quarkus.io/guides/all-config
https://github.com/keycloak/keycloak/blob/main/quarkus/runtime/pom.xml#L17

Starting Keycloak in development mode

The development mode is targeted for people trying out Keycloak the first time and get it up and
running quickly. It also offers convenient defaults for developers, for example to develop a new
Keycloak theme.

The development mode is started by invoking the following command:

bin/kc.[sh|bat] start-dev

Defaults

The development mode sets the following default configuration:

• HTTP is enabled

• Strict hostname resolution is disabled

• Cache is set to local (No distributed cache mechanism used for high availability)

• Theme- and Template-caching is disabled

Starting Keycloak in production mode

The production mode is targeted for deployments of Keycloak into production environments and
follows a "secure by default" principle.

The production mode is started by invoking the following command:

bin/kc.[sh|bat] start

Without further configuration, this command will not start Keycloak and show you an error
instead. This is done on purpose, because Keycloak follows a "secure by default" principle in this
mode and expects to have a hostname setup and a HTTPS/TLS setup available when started in
production mode.

Defaults

The production mode sets the following defaults:

• HTTP is disabled as transport layer security (HTTPS) is essential

• Hostname configuration is expected

• HTTPS/TLS configuration is expected

Make sure to follow the steps outlined in the Configuring Keycloak for production guide before
deploying Keycloak to production environments.

By default, example configuration options for the production mode are commented out in the
default conf/keycloak.conf file. These give you an idea about the main configuration to consider
when running Keycloak in production.

5

Setup of the initial admin user
The initial admin user can be added manually using the web frontend. It needs to be accessed using
a local connection (localhost) or using environment variables:

To add the initial admin user using environment variables, set KEYCLOAK_ADMIN=<username> for the
initial admin username and KEYCLOAK_ADMIN_PASSWORD=<password> for the initial admin password.
Keycloak parses these values at first startup to create an initial user with administrative rights.
Once the first user with administrative rights exists, you can use the admin UI or the command line
tool kcadm.[sh|bat] to create additional users.

If the initial administrator already exists and the environment variables are still present at startup,
an error message stating the failed creation of the initial administrator is shown in the logs.
Keycloak ignores the values and starts up correctly.

Optimize the Keycloak startup
It is highly recommended to optimize Keycloak for better startup times and memory consumption
before deploying into production environments. This section shows you how to apply a set of
optimizations for Keycloak to get the best performance and runtime behavior possible.

Create an optimized Keycloak build

By default, when the start or start-dev commands are used, Keycloak runs a build command under
the covers for convenience reasons. This build command performs a set of optimizations to achieve
an optimized startup- and runtime-behavior. The build process can take some time, usually a few
seconds. Especially when running Keycloak in containerized environments like Kubernetes or
OpenShift, startup time is important. So in order to avoid the time that gets lost when running a
build as part of Keycloaks first startup, it is possible and recommended to invoke a build explicitly
before starting up, for example as a separate step in a CI/CD pipeline.

First step: Run a build explicitly

To run a build, invoke the following command:

bin/kc.[sh|bat] build <build-options>

As you may notice, the command above shows build options that should be invoked. Keycloak
distinguishes between build options, that are usable when invoking the build command, and
configuration options, that are usable when starting up the server.

For a non-optimized startup of Keycloak, this distinction has no effect, but when a build is invoked
beforehand, there’s only a subset of Options available to the build command. The reason is, that
build options get persisted into Keycloaks classpath, so configuration for e.g. credentials like db-
password must not get persisted for security reasons.

Build options are marked in the All configuration guide with a tool icon. Find available build
options either by looking at the All configuration page with build options selected or by invoking

6

https://www.keycloak.org/server/all-config?f=build

the following command:

bin/kc.[sh|bat] build --help

Example: Run the build command to set the database to PostgreSQL before startup:

bin/kc.[sh|bat] build --db=postgres

Second step: Start Keycloak using --optimized

After a successful build, you can start Keycloak and turn off the default startup behavior by
invoking the following command:

bin/kc.[sh|bat] start --optimized <configuration-options>

The --optimized parameter tells Keycloak to assume a pre-built, already optimized Keycloak image
is used. As a result, Keycloak avoids checking for and running a build directly at startup to save the
time to walk through this process.

You can invoke all configuration options at startup - these are all options in the All configuration
guide that are not marked with a tool icon.

If a build option is found at startup with an equal value to the value used when invoking the build,
it gets silently ignored when using the --optimized flag. If it has a different value than the value
used when a build was invoked, a warning is shown in the logs and the previously built value is
used. In order for this value to take effect, you have to run a new build before starting.

The following example shows how to create an optimized build, then start Keycloak using the
--optimized parameter:

Create an optimized build

Set build option for the postgresql database vendor using the build command

bin/kc.[sh|bat] build --db=postgres

Set the runtime configuration options to keycloak.conf

Set configuration options for postgres inside conf/keycloak.conf

db-url-host=keycloak-postgres
db-username=keycloak
db-password=change_me
hostname=mykeycloak.acme.com
https-certificate-file

7

Start the server with the optimized parameter

bin/kc.[sh|bat] start --optimized

Most optimizations to startup and runtime behavior can be achieved by using the build command.
By using the keycloak.conf file as a source for configuration options, Keycloak avoids some steps at
startup that are needed when invoking the configuration using the command line, for example
initialising the CLI itself. As a result, the server starts up even faster.

Underlying concepts
This section gives an overview around the underlying concepts Keycloak uses, especially when it
comes to optimizing the startup.

Keycloak uses the Quarkus framework and it’s re-augmentation/mutable-jar approach under the
covers. This process is started when a build is invoked.

The following are some optimizations performed by the build command:

• A new closed-world assumption about installed providers is created, meaning that no need
exists to re-create the registry and initialize the factories at every Keycloak startup

• Configuration files are pre-parsed to reduce I/O when starting the server

• Database specific resources are configured and prepared to run against a certain database
vendor

• By persisting build options into the server image, the server does not perform any additional
step to interpret configuration options and (re)configure itself

You can read more at the specific Quarkus guide

8

https://quarkus.io/guides/reaugmentation

Configuring Keycloak for production
A Keycloak production environment provides secure authentication and authorization for
deployments that range from on-premise deployments that support a few thousand users to
deployments that serve millions of users.

This guide describes the general areas of configuration required for a production ready Keycloak
environment. This information focuses on the general concepts instead of the actual
implementation, which depends on your environment. The key aspects covered in this guide apply
to all environments, whether it is containerized, on-premise, GitOps, or Ansible.

TLS for secure communication
Keycloak continually exchanges sensitive data, which means that all communication to and from
Keycloak requires a secure communication channel. To prevent several attack vectors, you enable
HTTP over TLS, or HTTPS, for that channel.

To configure secure communication channels for Keycloak, see the Configuring TLS and
Configuring outgoing HTTP requests guides.

The hostname for Keycloak
In a production environment, Keycloak instances usually run in a private network, but Keycloak
needs to expose certain public facing endpoints to communicate with the applications to be
secured.

For details on the endpoint categories and instructions on how to configure the public hostname for
them, see the Configuring the hostname guide.

Reverse proxy in a distributed environment
Apart from Configuring the hostname production environments usually include a reverse proxy /
load balancer component. It separates and unifies access to the network used by your company or
organization. For a Keycloak production environment, this component is recommended.

For details on configuring proxy communication modes in Keycloak, see the Using a reverse proxy
guide. That guide also recommends which paths should be hidden from public access and which
paths should be exposed so that Keycloak can secure your applications.

Production grade database
The database used by Keycloak is crucial for the overall performance, availability, reliability and
integrity of Keycloak. For details on how to configure a supported database, see the Configuring the
database guide.

9

Support for Keycloak in a cluster
To ensure that users can continue to log in when a Keycloak instance goes down, a typical
production environment contains two or more Keycloak instances.

Keycloak runs on top of JGroups and Infinispan, which provide a reliable, high-availability stack for
a clustered scenario. When deployed to a cluster, the embedded Infinispan server communication
should be secured. You secure this communication either by enabling authentication and
encryption or by isolating the network used for cluster communication.

To find out more about using multiple nodes, the different caches and an appropriate stack for your
environment, see the Configuring distributed caches guide.

Configure Keycloak Server with IPv6 or IPv4
The system properties java.net.preferIPv4Stack and java.net.preferIPv6Addresses are used to
configure the JVM for use with IPv4 or IPv6 addresses.

By default, Keycloak is configured to prefer IPv4 addresses. In order to run with IPv6 addresses,
you need to specify java.net.preferIPv4Stack=false (the JVM default) and
java.net.preferIPv6Addresses=true. The latter ensures that any hostname to IP address conversions
always return IPv6 address variants.

These system properties are conveniently set by the JAVA_OPTS_APPEND environment variable. For
example, to change the IP stack preference from its default of IPv4 to IPv6, set an environment
variable as follows:

export JAVA_OPTS_APPEND="-Djava.net.preferIPv4Stack=false
-Djava.net.preferIPv6Addresses=true"

10

All configuration

Cache

Type Default

cache

Defines the cache mechanism for high-availability.

By default, a 'ispn' cache is used to create a cluster
between multiple server nodes. A 'local' cache disables
clustering and is intended for development and testing
purposes.

CLI: --cache

Env: KC_CACHE

ispn, local ispn

cache-config-file

Defines the file from which cache configuration should
be loaded from.

The configuration file is relative to the 'conf/'
directory.

CLI: --cache-config-file

Env: KC_CACHE_CONFIG_FILE

cache-stack

Define the default stack to use for cluster
communication and node discovery.

This option only takes effect if 'cache' is set to 'ispn'.
Default: udp.

CLI: --cache-stack

Env: KC_CACHE_STACK

tcp, udp,
kubernetes, ec2,
azure, google

Storage (Experimental)

11

Type Default

storage

Experimental: Sets the default storage mechanism for
all areas.

CLI: --storage

Env: KC_STORAGE

jpa, chm, hotrod

storage-area-action-token

Experimental: Sets a storage mechanism for action
tokens.

CLI: --storage-area-action-token

Env: KC_STORAGE_AREA_ACTION_TOKEN

jpa, chm, hotrod

storage-area-auth-session

Experimental: Sets a storage mechanism for
authentication sessions.

CLI: --storage-area-auth-session

Env: KC_STORAGE_AREA_AUTH_SESSION

jpa, chm, hotrod

storage-area-authorization

Experimental: Sets a storage mechanism for
authorizations.

CLI: --storage-area-authorization

Env: KC_STORAGE_AREA_AUTHORIZATION

jpa, chm, hotrod

storage-area-client

Experimental: Sets a storage mechanism for clients.

CLI: --storage-area-client

Env: KC_STORAGE_AREA_CLIENT

jpa, chm, hotrod

12

Type Default

storage-area-client-scope

Experimental: Sets a storage mechanism for client
scopes.

CLI: --storage-area-client-scope

Env: KC_STORAGE_AREA_CLIENT_SCOPE

jpa, chm, hotrod

storage-area-event-admin

Experimental: Sets a storage mechanism for admin
events.

CLI: --storage-area-event-admin

Env: KC_STORAGE_AREA_EVENT_ADMIN

jpa, chm, hotrod

storage-area-event-auth

Experimental: Sets a storage mechanism for
authentication and authorization events.

CLI: --storage-area-event-auth

Env: KC_STORAGE_AREA_EVENT_AUTH

jpa, chm, hotrod

storage-area-group

Experimental: Sets a storage mechanism for groups.

CLI: --storage-area-group

Env: KC_STORAGE_AREA_GROUP

jpa, chm, hotrod

storage-area-login-failure

Experimental: Sets a storage mechanism for login
failures.

CLI: --storage-area-login-failure

Env: KC_STORAGE_AREA_LOGIN_FAILURE

jpa, chm, hotrod

13

Type Default

storage-area-realm

Experimental: Sets a storage mechanism for realms.

CLI: --storage-area-realm

Env: KC_STORAGE_AREA_REALM

jpa, chm, hotrod

storage-area-role

Experimental: Sets a storage mechanism for roles.

CLI: --storage-area-role

Env: KC_STORAGE_AREA_ROLE

jpa, chm, hotrod

storage-area-single-use-object

Experimental: Sets a storage mechanism for single use
objects.

CLI: --storage-area-single-use-object

Env: KC_STORAGE_AREA_SINGLE_USE_OBJECT

jpa, chm, hotrod

storage-area-user

Experimental: Sets a storage mechanism for users.

CLI: --storage-area-user

Env: KC_STORAGE_AREA_USER

jpa, chm, hotrod

storage-area-user-session

Experimental: Sets a storage mechanism for user and
client sessions.

CLI: --storage-area-user-session

Env: KC_STORAGE_AREA_USER_SESSION

jpa, chm, hotrod

14

Type Default

storage-deployment-state-version-seed

Experimental: Secret that serves as a seed to mask the
version number of Keycloak in URLs.

Need to be identical across all servers in the cluster.
Will default to a random number generated when
starting the server which is secure but will lead to
problems when a loadbalancer without sticky sessions
is used or nodes are restarted.

CLI: --storage-deployment-state-version-seed

Env: KC_STORAGE_DEPLOYMENT_STATE_VERSION_SEED

storage-hotrod-host

Experimental: Sets the host of the Infinispan server.

CLI: --storage-hotrod-host

Env: KC_STORAGE_HOTROD_HOST

storage-hotrod-password

Experimental: Sets the password of the Infinispan user.

CLI: --storage-hotrod-password

Env: KC_STORAGE_HOTROD_PASSWORD

storage-hotrod-port

Experimental: Sets the port of the Infinispan server.

CLI: --storage-hotrod-port

Env: KC_STORAGE_HOTROD_PORT

storage-hotrod-username

Experimental: Sets the username of the Infinispan user.

CLI: --storage-hotrod-username

Env: KC_STORAGE_HOTROD_USERNAME

Database

15

Type Default

db

The database vendor.

CLI: --db

Env: KC_DB

dev-file, dev-
mem, mariadb,
mssql, mysql,
oracle, postgres

dev-file

db-password

The password of the database user.

CLI: --db-password

Env: KC_DB_PASSWORD

db-pool-initial-size

The initial size of the connection pool.

CLI: --db-pool-initial-size

Env: KC_DB_POOL_INITIAL_SIZE

db-pool-max-size

The maximum size of the connection pool.

CLI: --db-pool-max-size

Env: KC_DB_POOL_MAX_SIZE

100

db-pool-min-size

The minimal size of the connection pool.

CLI: --db-pool-min-size

Env: KC_DB_POOL_MIN_SIZE

db-schema

The database schema to be used.

CLI: --db-schema

Env: KC_DB_SCHEMA

16

Type Default

db-url

The full database JDBC URL.

If not provided, a default URL is set based on the
selected database vendor. For instance, if using
'postgres', the default JDBC URL would be
'jdbc:postgresql://localhost/keycloak'.

CLI: --db-url

Env: KC_DB_URL

db-url-database

Sets the database name of the default JDBC URL of the
chosen vendor.

If the db-url option is set, this option is ignored.

CLI: --db-url-database

Env: KC_DB_URL_DATABASE

db-url-host

Sets the hostname of the default JDBC URL of the
chosen vendor.

If the db-url option is set, this option is ignored.

CLI: --db-url-host

Env: KC_DB_URL_HOST

db-url-port

Sets the port of the default JDBC URL of the chosen
vendor.

If the db-url option is set, this option is ignored.

CLI: --db-url-port

Env: KC_DB_URL_PORT

17

Type Default

db-url-properties

Sets the properties of the default JDBC URL of the
chosen vendor.

If the db-url option is set, this option is ignored.

CLI: --db-url-properties

Env: KC_DB_URL_PROPERTIES

db-username

The username of the database user.

CLI: --db-username

Env: KC_DB_USERNAME

Transaction

Type Default

transaction-xa-enabled

If set to false, Keycloak uses a non-XA datasource in
case the database does not support XA transactions.

CLI: --transaction-xa-enabled

Env: KC_TRANSACTION_XA_ENABLED

true, false true

Feature

18

Type Default

features

Enables a set of one or more features.

CLI: --features

Env: KC_FEATURES

authorization,
account2,
account-api,
admin-fine-
grained-authz,
admin-api,
admin, admin2,
docker,
impersonation,
openshift-
integration,
scripts, token-
exchange, web-
authn, client-
policies, ciba,
map-storage, par,
declarative-user-
profile, dynamic-
scopes, client-
secret-rotation,
step-up-
authentication,
recovery-codes,
update-email,
preview

19

Type Default

features-disabled

Disables a set of one or more features.

CLI: --features-disabled

Env: KC_FEATURES_DISABLED

authorization,
account2,
account-api,
admin-fine-
grained-authz,
admin-api,
admin, admin2,
docker,
impersonation,
openshift-
integration,
scripts, token-
exchange, web-
authn, client-
policies, ciba,
map-storage, par,
declarative-user-
profile, dynamic-
scopes, client-
secret-rotation,
step-up-
authentication,
recovery-codes,
update-email,
preview

Hostname

Type Default

hostname

Hostname for the Keycloak server.

CLI: --hostname

Env: KC_HOSTNAME

20

Type Default

hostname-admin

The hostname for accessing the administration console.

Use this option if you are exposing the administration
console using a hostname other than the value set to
the 'hostname' option.

CLI: --hostname-admin

Env: KC_HOSTNAME_ADMIN

hostname-admin-url

Set the base URL for accessing the administration
console, including scheme, host, port and path

CLI: --hostname-admin-url

Env: KC_HOSTNAME_ADMIN_URL

hostname-path

This should be set if proxy uses a different context-path
for Keycloak.

CLI: --hostname-path

Env: KC_HOSTNAME_PATH

hostname-port

The port used by the proxy when exposing the
hostname.

Set this option if the proxy uses a port other than the
default HTTP and HTTPS ports.

CLI: --hostname-port

Env: KC_HOSTNAME_PORT

-1

hostname-strict

Disables dynamically resolving the hostname from
request headers.

Should always be set to true in production, unless
proxy verifies the Host header.

CLI: --hostname-strict

Env: KC_HOSTNAME_STRICT

true, false true

21

Type Default

hostname-strict-backchannel

By default backchannel URLs are dynamically resolved
from request headers to allow internal and external
applications.

If all applications use the public URL this option
should be enabled.

CLI: --hostname-strict-backchannel

Env: KC_HOSTNAME_STRICT_BACKCHANNEL

true, false false

hostname-url

Set the base URL for frontend URLs, including scheme,
host, port and path.

CLI: --hostname-url

Env: KC_HOSTNAME_URL

HTTP/TLS

Type Default

http-enabled

Enables the HTTP listener.

CLI: --http-enabled

Env: KC_HTTP_ENABLED

true, false false

http-host

The used HTTP Host.

CLI: --http-host

Env: KC_HTTP_HOST

0.0.0.0

http-port

The used HTTP port.

CLI: --http-port

Env: KC_HTTP_PORT

8080

22

Type Default

http-relative-path

Set the path relative to '/' for serving resources.

The path must start with a '/'.

CLI: --http-relative-path

Env: KC_HTTP_RELATIVE_PATH

/

https-certificate-file

The file path to a server certificate or certificate chain
in PEM format.

CLI: --https-certificate-file

Env: KC_HTTPS_CERTIFICATE_FILE

https-certificate-key-file

The file path to a private key in PEM format.

CLI: --https-certificate-key-file

Env: KC_HTTPS_CERTIFICATE_KEY_FILE

https-cipher-suites

The cipher suites to use.

If none is given, a reasonable default is selected.

CLI: --https-cipher-suites

Env: KC_HTTPS_CIPHER_SUITES

https-client-auth

Configures the server to require/request client
authentication.

CLI: --https-client-auth

Env: KC_HTTPS_CLIENT_AUTH

none, request,
required

none

23

Type Default

https-key-store-file

The key store which holds the certificate information
instead of specifying separate files.

CLI: --https-key-store-file

Env: KC_HTTPS_KEY_STORE_FILE

https-key-store-password

The password of the key store file.

CLI: --https-key-store-password

Env: KC_HTTPS_KEY_STORE_PASSWORD

password

https-key-store-type

The type of the key store file.

If not given, the type is automatically detected based
on the file name.

CLI: --https-key-store-type

Env: KC_HTTPS_KEY_STORE_TYPE

https-port

The used HTTPS port.

CLI: --https-port

Env: KC_HTTPS_PORT

8443

https-protocols

The list of protocols to explicitly enable.

CLI: --https-protocols

Env: KC_HTTPS_PROTOCOLS

TLSv1.3

24

Type Default

https-trust-store-file

The trust store which holds the certificate information
of the certificates to trust.

CLI: --https-trust-store-file

Env: KC_HTTPS_TRUST_STORE_FILE

https-trust-store-password

The password of the trust store file.

CLI: --https-trust-store-password

Env: KC_HTTPS_TRUST_STORE_PASSWORD

https-trust-store-type

The type of the trust store file.

If not given, the type is automatically detected based
on the file name.

CLI: --https-trust-store-type

Env: KC_HTTPS_TRUST_STORE_TYPE

Health

Type Default

health-enabled

If the server should expose health check endpoints.

If enabled, health checks are available at the '/health',
'/health/ready' and '/health/live' endpoints.

CLI: --health-enabled

Env: KC_HEALTH_ENABLED

true, false false

Metrics

25

Type Default

metrics-enabled

If the server should expose metrics.

If enabled, metrics are available at the '/metrics'
endpoint.

CLI: --metrics-enabled

Env: KC_METRICS_ENABLED

true, false false

Proxy

Type Default

proxy

The proxy address forwarding mode if the server is
behind a reverse proxy.

CLI: --proxy

Env: KC_PROXY

none, edge,
reencrypt,
passthrough

none

Vault

Type Default

vault

Enables a vault provider.

CLI: --vault

Env: KC_VAULT

file, hashicorp

vault-dir

If set, secrets can be obtained by reading the content of
files within the given directory.

CLI: --vault-dir

Env: KC_VAULT_DIR

Logging

26

Type Default

log

Enable one or more log handlers in a comma-separated
list.

CLI: --log

Env: KC_LOG

console, file, gelf console

log-console-color

Enable or disable colors when logging to console.

CLI: --log-console-color

Env: KC_LOG_CONSOLE_COLOR

true, false false

log-console-format

The format of unstructured console log entries.

If the format has spaces in it, escape the value using
"<format>".

CLI: --log-console-format

Env: KC_LOG_CONSOLE_FORMAT

%d{yyyy-MM-dd
HH:mm:ss,SSS}
%-5p [%c] (%t)
%s%e%n

log-console-output

Set the log output to JSON or default (plain)
unstructured logging.

CLI: --log-console-output

Env: KC_LOG_CONSOLE_OUTPUT

default, json default

log-file

Set the log file path and filename.

CLI: --log-file

Env: KC_LOG_FILE

data/log/keycloak.
log

27

Type Default

log-file-format

Set a format specific to file log entries.

CLI: --log-file-format

Env: KC_LOG_FILE_FORMAT

%d{yyyy-MM-dd
HH:mm:ss,SSS}
%-5p [%c] (%t)
%s%e%n

log-file-output

Set the log output to JSON or default (plain)
unstructured logging.

CLI: --log-file-output

Env: KC_LOG_FILE_OUTPUT

default, json default

log-gelf-facility

The facility (name of the process) that sends the
message.

CLI: --log-gelf-facility

Env: KC_LOG_GELF_FACILITY

keycloak

log-gelf-host

Hostname of the Logstash or Graylog Host.

By default UDP is used, prefix the host with 'tcp:' to
switch to TCP. Example: 'tcp:localhost'

CLI: --log-gelf-host

Env: KC_LOG_GELF_HOST

localhost

log-gelf-include-location

Include source code location.

CLI: --log-gelf-include-location

Env: KC_LOG_GELF_INCLUDE_LOCATION

true, false true

28

Type Default

log-gelf-include-message-parameters

Include message parameters from the log event.

CLI: --log-gelf-include-message-parameters

Env: KC_LOG_GELF_INCLUDE_MESSAGE_PARAMETERS

true, false true

log-gelf-include-stack-trace

If set to true, occuring stack traces are included in the
'StackTrace' field in the GELF output.

CLI: --log-gelf-include-stack-trace

Env: KC_LOG_GELF_INCLUDE_STACK_TRACE

true, false true

log-gelf-level

The log level specifying which message levels will be
logged by the GELF logger.

Message levels lower than this value will be discarded.

CLI: --log-gelf-level

Env: KC_LOG_GELF_LEVEL

INFO

log-gelf-max-message-size

Maximum message size (in bytes).

If the message size is exceeded, GELF will submit the
message in multiple chunks.

CLI: --log-gelf-max-message-size

Env: KC_LOG_GELF_MAX_MESSAGE_SIZE

8192

log-gelf-port

The port the Logstash or Graylog Host is called on.

CLI: --log-gelf-port

Env: KC_LOG_GELF_PORT

12201

29

Type Default

log-gelf-timestamp-format

Set the format for the GELF timestamp field.

Uses Java SimpleDateFormat pattern.

CLI: --log-gelf-timestamp-format

Env: KC_LOG_GELF_TIMESTAMP_FORMAT

yyyy-MM-dd
HH:mm:ss,SSS

log-level

The log level of the root category or a comma-separated
list of individual categories and their levels.

For the root category, you don’t need to specify a
category.

CLI: --log-level

Env: KC_LOG_LEVEL

info

30

Enabling and disabling features
Keycloak has packed some functionality in features, including some disabled features, such as
Technology Preview and deprecated features. Other features are enabled by default, but you can
disable them if they do not apply to your use of Keycloak.

Enabling features
Some supported features, and all preview features, are disabled by default. To enable a feature,
enter this command:

bin/kc.[sh|bat] build --features=<name>[,<name>]

For example, to enable docker and token-exchange, enter this command:

bin/kc.[sh|bat] build --features=docker,token-exchange

To enable all preview features, enter this command:

bin/kc.[sh|bat] build --features=preview

Disabling features
To disable a feature that is enabled by default, enter this command:

bin/kc.[sh|bat] build --features-disabled=<name>[,<name>]

For example to disable impersonation, enter this command:

bin/kc.[sh|bat] build --features-disabled=impersonation

You can disable all default features by entering this command:

bin/kc.[sh|bat] build --features-disabled=default

This command can be used in combination with features to explicitly set what features should be
available. If a feature is added both to the features-disabled list and the features list, it will be
enabled.

31

Supported features
The following list contains supported features that are enabled by default, and can be disabled if
not needed.

account-api Account Management REST API

account2 New Account Management Console

admin-api Admin API

admin2 New Admin Console

authorization Authorization Service

ciba OpenID Connect Client Initiated Backchannel Authentication (CIBA)

client-policies Client configuration policies

impersonation Ability for admins to impersonate users

par OAuth 2.0 Pushed Authorization Requests (PAR)

step-up-authentication Step-up Authentication

web-authn W3C Web Authentication (WebAuthn)

Disabled by default

The following list contains supported features that are disabled by default, and can be enabled if
needed.

docker Docker Registry protocol

Preview features
Preview features are disabled by default and are not recommended for use in production. These
features may change or be removed at a future release.

admin-fine-grained-
authz

Fine-Grained Admin Permissions

client-secret-rotation Client Secret Rotation

declarative-user-profile Configure user profiles using a declarative style

openshift-integration Extension to enable securing OpenShift

recovery-codes Recovery codes

scripts Write custom authenticators using JavaScript

token-exchange Token Exchange Service

update-email Update Email Action

32

Deprecated features
The following list contains deprecated features that will be removed in a future release. These
features are disabled by default.

admin Legacy Admin Console

Relevant options

Type Default

features

Enables a set of one or more features.

CLI: --features

Env: KC_FEATURES

authorization,
account2,
account-api,
admin-fine-
grained-authz,
admin-api,
admin, admin2,
docker,
impersonation,
openshift-
integration,
scripts, token-
exchange, web-
authn, client-
policies, ciba,
map-storage, par,
declarative-user-
profile, dynamic-
scopes, client-
secret-rotation,
step-up-
authentication,
recovery-codes,
update-email,
preview

33

Type Default

features-disabled

Disables a set of one or more features.

CLI: --features-disabled

Env: KC_FEATURES_DISABLED

authorization,
account2,
account-api,
admin-fine-
grained-authz,
admin-api,
admin, admin2,
docker,
impersonation,
openshift-
integration,
scripts, token-
exchange, web-
authn, client-
policies, ciba,
map-storage, par,
declarative-user-
profile, dynamic-
scopes, client-
secret-rotation,
step-up-
authentication,
recovery-codes,
update-email,
preview

34

Running Keycloak in a container
Keycloak handles containerized environments such as Kubernetes or OpenShift as first-class
citizens. This guide describes how to optimize and run the Keycloak container image to provide the
best experience running a Keycloak container.

Creating a customized and optimized container image
The default Keycloak container image ships ready to be configured and optimized.

For the best start up of your Keycloak container, build an image by running the build step during
the container build. This step will save time in every subsequent start phase of the container image.

Building your optimized Keycloak docker image

The following Dockerfile creates a pre-configured Keycloak image that enables the health and
metrics endpoints, enables the token exchange feature, and uses a PostgreSQL database.

Dockerfile:

FROM quay.io/keycloak/keycloak:latest as builder

Enable health and metrics support
ENV KC_HEALTH_ENABLED=true
ENV KC_METRICS_ENABLED=true

Configure a database vendor
ENV KC_DB=postgres

WORKDIR /opt/keycloak
for demonstration purposes only, please make sure to use proper certificates in
production instead
RUN keytool -genkeypair -storepass password -storetype PKCS12 -keyalg RSA -keysize
2048 -dname "CN=server" -alias server -ext "SAN:c=DNS:localhost,IP:127.0.0.1"
-keystore conf/server.keystore
RUN /opt/keycloak/bin/kc.sh build

FROM quay.io/keycloak/keycloak:latest
COPY --from=builder /opt/keycloak/ /opt/keycloak/

change these values to point to a running postgres instance
ENV KC_DB_URL=<DBURL>
ENV KC_DB_USERNAME=<DBUSERNAME>
ENV KC_DB_PASSWORD=<DBPASSWORD>
ENV KC_HOSTNAME=localhost
ENTRYPOINT ["/opt/keycloak/bin/kc.sh"]

The build process includes multiple stages:

35

• Run the build command to set server build options to create an optimized image.

• The files generated by the build stage are copied into a new image.

• In the final image, additional configuration options for the hostname and database are set so
that you don’t need to set them again when running the container.

• In the entrypoint, the kc.sh enables access to all the distribution sub-commands.

To install custom providers, you just need to define a step to include the JAR file(s) into the
/opt/keycloak/providers directory:

A example build step that downloads a JAR file from a URL and adds it to the
providers directory
RUN curl -sL <MY_PROVIDER_JAR_URL> -o /opt/keycloak/providers/myprovider.jar

Building the docker image

To build the actual docker image, run the following command from the directory containing your
Dockerfile:

podman|docker build . -t mykeycloak

Starting the optimized Keycloak docker image

To start the image, run:

podman|docker run --name mykeycloak -p 8443:8443 \
 -e KEYCLOAK_ADMIN=admin -e KEYCLOAK_ADMIN_PASSWORD=change_me \
 mykeycloak \
 start --optimized

Keycloak starts in production mode, using only secured HTTPS communication, and is available on
https://localhost:8443.

Health check endpoints are available at https://localhost:8443/health, https://localhost:8443/
health/ready and https://localhost:8443/health/live.

Opening up https://localhost:8443/metrics leads to a page containing operational metrics that
could be used by your monitoring solution.

Exposing the container to a different port
By default, the server is listening for http and https requests using the ports 8080 and 8443,
respectively.

If you want to expose the container using a different port, you need to set the hostname-port
accordingly:

36

https://localhost:8443
https://localhost:8443/health
https://localhost:8443/health/ready
https://localhost:8443/health/ready
https://localhost:8443/health/live
https://localhost:8443/metrics

1. Exposing the container using a port other than the default ports

podman|docker run --name mykeycloak -p 3000:8443 \
 -e KEYCLOAK_ADMIN=admin -e KEYCLOAK_ADMIN_PASSWORD=change_me \
 mykeycloak \
 start --optimized --hostname-port=3000

By setting the hostname-port option you can now access the server at https://localhost:3000.

Trying Keycloak in development mode
The easiest way to try Keycloak from a container for development or testing purposes is to use the
Development mode. You use the start-dev command:

podman|docker run --name mykeycloak -p 8080:8080 \
 -e KEYCLOAK_ADMIN=admin -e KEYCLOAK_ADMIN_PASSWORD=change_me \
 quay.io/keycloak/keycloak:latest \
 start-dev

Invoking this command starts the Keycloak server in development mode.

This mode should be strictly avoided in production environments because it has insecure defaults.
For more information about running Keycloak in production, take a look at the Configuring
Keycloak for production guide.

Running a standard keycloak container
In keeping with concepts such as immutable infrastructure, containers need to be re-provisioned
routinely. In these environments, you need containers that start fast, therefore you need to create
an optimized image as described in the preceding section. However, if your environment has
different requirements, you can run a standard Keycloak image by just running the start
command. For example:

podman|docker run --name mykeycloak -p 8080:8080 \
 -e KEYCLOAK_ADMIN=admin -e KEYCLOAK_ADMIN_PASSWORD=change_me \
 quay.io/keycloak/keycloak:latest \
 start \
 --db=postgres --features=token-exchange \
 --db-url=<JDBC-URL> --db-username=<DB-USER> --db-password=<DB-PASSWORD> \
 --https-key-store-file=<file> --https-key-store-password=<password>

Running this command starts a Keycloak server that detects and applies the build options first. In
the example, the line --db=postgres --features=token-exchange sets the database vendor to
PostgreSQL and enables the token exchange feature.

Keycloak then starts up and applies the configuration for the specific environment. This approach

37

https://localhost:3000

significantly increases startup time and creates an image that is mutable, which is not the best
practice.

Provide initial admin credentials when running in a
container
Keycloak only allows to create the initial admin user from a local network connection. This is not
the case when running in a container, so you have to provide the following environment variables
when you run the image:

setting the admin username
-e KEYCLOAK_ADMIN=<admin-user-name>

setting the initial password
-e KEYCLOAK_ADMIN_PASSWORD=change_me

Importing A Realm On Startup
The published Keycloak containers have a directory /opt/keycloak/data/import. If you put one or
more import files in that directory via a volume mount or other means and add the startup
argument --import-realm, the Keycloak container will import that data on startup! This may only
make sense to do in Dev mode.

podman|docker run --name keycloak_unoptimized -p 8080:8080 \
 -e KEYCLOAK_ADMIN=admin -e KEYCLOAK_ADMIN_PASSWORD=change_me \
 -v /path/to/realm/data:/opt/keycloak/data/import
 quay.io/keycloak/keycloak:latest \
 start-dev --import-realm

Feel free to join the open GitHub Discussion around enhancements of the admin bootstrapping
process.

Relevant options

Type Default

db

The database vendor.

CLI: --db

Env: KC_DB

dev-file, dev-
mem, mariadb,
mssql, mysql,
oracle, postgres

dev-file

38

https://quay.io/keycloak/keycloak
https://github.com/keycloak/keycloak/discussions/8549

Type Default

db-password

The password of the database user.

CLI: --db-password

Env: KC_DB_PASSWORD

db-url

The full database JDBC URL.

If not provided, a default URL is set based on the
selected database vendor. For instance, if using
'postgres', the default JDBC URL would be
'jdbc:postgresql://localhost/keycloak'.

CLI: --db-url

Env: KC_DB_URL

db-username

The username of the database user.

CLI: --db-username

Env: KC_DB_USERNAME

39

Type Default

features

Enables a set of one or more features.

CLI: --features

Env: KC_FEATURES

authorization,
account2,
account-api,
admin-fine-
grained-authz,
admin-api,
admin, admin2,
docker,
impersonation,
openshift-
integration,
scripts, token-
exchange, web-
authn, client-
policies, ciba,
map-storage, par,
declarative-user-
profile, dynamic-
scopes, client-
secret-rotation,
step-up-
authentication,
recovery-codes,
update-email,
preview

health-enabled

If the server should expose health check endpoints.

If enabled, health checks are available at the '/health',
'/health/ready' and '/health/live' endpoints.

CLI: --health-enabled

Env: KC_HEALTH_ENABLED

true, false false

hostname

Hostname for the Keycloak server.

CLI: --hostname

Env: KC_HOSTNAME

40

Type Default

https-key-store-file

The key store which holds the certificate information
instead of specifying separate files.

CLI: --https-key-store-file

Env: KC_HTTPS_KEY_STORE_FILE

https-key-store-password

The password of the key store file.

CLI: --https-key-store-password

Env: KC_HTTPS_KEY_STORE_PASSWORD

password

metrics-enabled

If the server should expose metrics.

If enabled, metrics are available at the '/metrics'
endpoint.

CLI: --metrics-enabled

Env: KC_METRICS_ENABLED

true, false false

41

All provider configuration

authentication-sessions

infinispan

Type Default

spi-authentication-sessions-infinispan-auth-sessions-limit

The maximum number of concurrent authentication
sessions per RootAuthenticationSession.

CLI: --spi-authentication-sessions-infinispan-auth
-sessions-limit

Env:
KC_SPI_AUTHENTICATION_SESSIONS_INFINISPAN_AUTH_SESSION
S_LIMIT

int 300

map

Type Default

spi-authentication-sessions-map-auth-sessions-limit

The maximum number of concurrent authentication
sessions per RootAuthenticationSession.

CLI: --spi-authentication-sessions-map-auth-sessions
-limit

Env:
KC_SPI_AUTHENTICATION_SESSIONS_MAP_AUTH_SESSIONS_LIMIT

int 300

ciba-auth-channel

ciba-http-auth-channel

42

Type Default

spi-ciba-auth-channel-ciba-http-auth-channel-http-
authentication-channel-uri

The HTTP(S) URI of the authentication channel.

CLI: --spi-ciba-auth-channel-ciba-http-auth-channel
-http-authentication-channel-uri

Env:
KC_SPI_CIBA_AUTH_CHANNEL_CIBA_HTTP_AUTH_CHANNEL_HTTP_A
UTHENTICATION_CHANNEL_URI

string none

connections-http-client

default

Type Default

spi-connections-http-client-default-client-key-password

The key password.

CLI: --spi-connections-http-client-default-client-key
-password

Env:
KC_SPI_CONNECTIONS_HTTP_CLIENT_DEFAULT_CLIENT_KEY_PASS
WORD

string -1

spi-connections-http-client-default-client-keystore

The file path of the key store from where the key material
is going to be read from to set-up TLS connections.

CLI: --spi-connections-http-client-default-client
-keystore

Env:
KC_SPI_CONNECTIONS_HTTP_CLIENT_DEFAULT_CLIENT_KEYSTORE

string none

43

Type Default

spi-connections-http-client-default-client-keystore-
password

The key store password.

CLI: --spi-connections-http-client-default-client
-keystore-password

Env:
KC_SPI_CONNECTIONS_HTTP_CLIENT_DEFAULT_CLIENT_KEYSTORE
_PASSWORD

string none

spi-connections-http-client-default-connection-pool-size

Assigns maximum total connection value.

CLI: --spi-connections-http-client-default-connection
-pool-size

Env:
KC_SPI_CONNECTIONS_HTTP_CLIENT_DEFAULT_CONNECTION_POOL
_SIZE

int none

spi-connections-http-client-default-connection-ttl-millis

Sets maximum time, in milliseconds, to live for persistent
connections.

CLI: --spi-connections-http-client-default-connection
-ttl-millis

Env:
KC_SPI_CONNECTIONS_HTTP_CLIENT_DEFAULT_CONNECTION_TTL_
MILLIS

long -1

spi-connections-http-client-default-disable-cookies

Disables state (cookie) management.

CLI: --spi-connections-http-client-default-disable
-cookies

Env:
KC_SPI_CONNECTIONS_HTTP_CLIENT_DEFAULT_DISABLE_COOKIES

boolean true

44

Type Default

spi-connections-http-client-default-disable-trust-manager

Disable trust management and hostname verification.

NOTE this is a security hole, so only set this option if you
cannot or do not want to verify the identity of the host
you are communicating with.

CLI: --spi-connections-http-client-default-disable
-trust-manager

Env:
KC_SPI_CONNECTIONS_HTTP_CLIENT_DEFAULT_DISABLE_TRUST_M
ANAGER

boolean false

spi-connections-http-client-default-establish-connection-
timeout-millis

When trying to make an initial socket connection, what is
the timeout?

CLI: --spi-connections-http-client-default-establish
-connection-timeout-millis

Env:
KC_SPI_CONNECTIONS_HTTP_CLIENT_DEFAULT_ESTABLISH_CONNE
CTION_TIMEOUT_MILLIS

long -1

spi-connections-http-client-default-max-connection-idle-
time-millis

Sets the time, in milliseconds, for evicting idle connections
from the pool.

CLI: --spi-connections-http-client-default-max
-connection-idle-time-millis

Env:
KC_SPI_CONNECTIONS_HTTP_CLIENT_DEFAULT_MAX_CONNECTION_
IDLE_TIME_MILLIS

long 900000

spi-connections-http-client-default-max-pooled-per-route

Assigns maximum connection per route value.

CLI: --spi-connections-http-client-default-max-pooled
-per-route

Env:
KC_SPI_CONNECTIONS_HTTP_CLIENT_DEFAULT_MAX_POOLED_PER_
ROUTE

int 64

45

Type Default

spi-connections-http-client-default-proxy-mappings

Denotes the combination of a regex based hostname
pattern and a proxy-uri in the form of
hostnamePattern;proxyUri.

CLI: --spi-connections-http-client-default-proxy
-mappings

Env:
KC_SPI_CONNECTIONS_HTTP_CLIENT_DEFAULT_PROXY_MAPPINGS

string none

spi-connections-http-client-default-reuse-connections

If connections should be reused.

CLI: --spi-connections-http-client-default-reuse
-connections

Env:
KC_SPI_CONNECTIONS_HTTP_CLIENT_DEFAULT_REUSE_CONNECTIO
NS

boolean true

spi-connections-http-client-default-socket-timeout-millis

Socket inactivity timeout.

CLI: --spi-connections-http-client-default-socket
-timeout-millis

Env:
KC_SPI_CONNECTIONS_HTTP_CLIENT_DEFAULT_SOCKET_TIMEOUT_
MILLIS

long 5000

connections-jpa

legacy

46

Type Default

spi-connections-jpa-legacy-initialize-empty

Initialize database if empty.

If set to false the database has to be manually initialized.
If you want to manually initialize the database set
migrationStrategy to manual which will create a file with
SQL commands to initialize the database.

CLI: --spi-connections-jpa-legacy-initialize-empty

Env: KC_SPI_CONNECTIONS_JPA_LEGACY_INITIALIZE_EMPTY

boolean true

spi-connections-jpa-legacy-migration-export

Path for where to write manual database
initialization/migration file.

CLI: --spi-connections-jpa-legacy-migration-export

Env: KC_SPI_CONNECTIONS_JPA_LEGACY_MIGRATION_EXPORT

string none

spi-connections-jpa-legacy-migration-strategy

Strategy to use to migrate database.

Valid values are update, manual and validate. Update will
automatically migrate the database schema. Manual will
export the required changes to a file with SQL commands
that you can manually execute on the database. Validate
will simply check if the database is up-to-date.

CLI: --spi-connections-jpa-legacy-migration-strategy

Env: KC_SPI_CONNECTIONS_JPA_LEGACY_MIGRATION_STRATEGY

update, manual,
validate

update

dblock

jpa

Type Default

spi-dblock-jpa-lock-wait-timeout

The maximum time to wait when waiting to release a
database lock.

CLI: --spi-dblock-jpa-lock-wait-timeout

Env: KC_SPI_DBLOCK_JPA_LOCK_WAIT_TIMEOUT

int none

47

events-listener

email

48

49

Type Default

spi-events-listener-email-exclude-events

A comma-separated list of events that should not be sent
via email to the user’s account.

CLI: --spi-events-listener-email-exclude-events

Env: KC_SPI_EVENTS_LISTENER_EMAIL_EXCLUDE_EVENTS

authreqid_to_toke
n,
authreqid_to_toke
n_error,
client_delete,
client_delete_error
, client_info,
client_info_error,
client_initiated_ac
count_linking,
client_initiated_ac
count_linking_err
or, client_login,
client_login_error,
client_register,
client_register_err
or, client_update,
client_update_erro
r, code_to_token,
code_to_token_err
or,
custom_required_
action,
custom_required_
action_error,
delete_account,
delete_account_er
ror,
execute_action_to
ken,
execute_action_to
ken_error,
execute_actions,
execute_actions_er
ror,
federated_identity
_link,
federated_identity
_link_error,
grant_consent,
grant_consent_err
or,
identity_provider_
first_login,
identity_provider_
first_login_error,
identity_provider_
link_account,

none

50

Type Default

spi-events-listener-email-include-events

A comma-separated list of events that should be sent via
email to the user’s account.

CLI: --spi-events-listener-email-include-events

Env: KC_SPI_EVENTS_LISTENER_EMAIL_INCLUDE_EVENTS

authreqid_to_toke
n,
authreqid_to_toke
n_error,
client_delete,
client_delete_error
, client_info,
client_info_error,
client_initiated_ac
count_linking,
client_initiated_ac
count_linking_err
or, client_login,
client_login_error,
client_register,
client_register_err
or, client_update,
client_update_erro
r, code_to_token,
code_to_token_err
or,
custom_required_
action,
custom_required_
action_error,
delete_account,
delete_account_er
ror,
execute_action_to
ken,
execute_action_to
ken_error,
execute_actions,
execute_actions_er
ror,
federated_identity
_link,
federated_identity
_link_error,
grant_consent,
grant_consent_err
or,
identity_provider_
first_login,
identity_provider_
first_login_error,
identity_provider_
link_account,

All events

51

jboss-logging

Type Default

spi-events-listener-jboss-logging-error-level

The log level for error messages.

CLI: --spi-events-listener-jboss-logging-error-level

Env: KC_SPI_EVENTS_LISTENER_JBOSS_LOGGING_ERROR_LEVEL

debug, error, fatal,
info, trace, warn

warn

spi-events-listener-jboss-logging-success-level

The log level for success messages.

CLI: --spi-events-listener-jboss-logging-success-level

Env:
KC_SPI_EVENTS_LISTENER_JBOSS_LOGGING_SUCCESS_LEVEL

debug, error, fatal,
info, trace, warn

debug

resource-encoding

gzip

Type Default

spi-resource-encoding-gzip-excluded-content-types

A space separated list of content-types to exclude from
encoding.

CLI: --spi-resource-encoding-gzip-excluded-content
-types

Env:
KC_SPI_RESOURCE_ENCODING_GZIP_EXCLUDED_CONTENT_TYPES

string image/png
image/jpeg

sticky-session-encoder

infinispan

52

Type Default

spi-sticky-session-encoder-infinispan-should-attach-route

If the route should be attached to cookies to reflect the
node that owns a particular session.

CLI: --spi-sticky-session-encoder-infinispan-should
-attach-route

Env:
KC_SPI_STICKY_SESSION_ENCODER_INFINISPAN_SHOULD_ATTACH
_ROUTE

boolean true

truststore

file

Type Default

spi-truststore-file-file

The file path of the trust store from where the certificates
are going to be read from to validate TLS connections.

CLI: --spi-truststore-file-file

Env: KC_SPI_TRUSTSTORE_FILE_FILE

string none

spi-truststore-file-hostname-verification-policy

The hostname verification policy.

CLI: --spi-truststore-file-hostname-verification-policy

Env:
KC_SPI_TRUSTSTORE_FILE_HOSTNAME_VERIFICATION_POLICY

any, wildcard,
strict

wildcard

spi-truststore-file-password

The trust store password.

CLI: --spi-truststore-file-password

Env: KC_SPI_TRUSTSTORE_FILE_PASSWORD

string none

well-known

53

openid-configuration

Type Default

spi-well-known-openid-configuration-include-client-
scopes

If client scopes should be used to calculate the list of
supported scopes.

CLI: --spi-well-known-openid-configuration-include
-client-scopes

Env:
KC_SPI_WELL_KNOWN_OPENID_CONFIGURATION_INCLUDE_CLIENT_
SCOPES

boolean true

spi-well-known-openid-configuration-openid-
configuration-override

The file path from where the metadata should be loaded
from.

You can use an absolute file path or, if the file is in the
server classpath, use the 'classpath:' prefix to load the file
from the classpath.

CLI: --spi-well-known-openid-configuration-openid
-configuration-override

Env:
KC_SPI_WELL_KNOWN_OPENID_CONFIGURATION_OPENID_CONFIGUR
ATION_OVERRIDE

string none

54

Configuring TLS
Transport Layer Security (short: TLS) is crucial to exchange data over a secured channel. For
production environments, you should never expose Keycloak endpoints through HTTP, as sensitive
data is at the core of what Keycloak exchanges with other applications. In this guide, you will learn
how to configure Keycloak to use HTTPS/TLS.

Configuring TLS in Keycloak
Keycloak can be configured to load the required certificate infrastructure using files in PEM format
or from a Java Keystore. When both alternatives are configured, the PEM files takes precedence
over the Java Keystores.

Providing certificates in PEM format

When you use a pair of matching certificate and private key files in PEM format, you configure
Keycloak to use them by running the following command:

bin/kc.[sh|bat] start --https-certificate-file=/path/to/certfile.pem --https
-certificate-key-file=/path/to/keyfile.pem

Keycloak creates a keystore out of these files in memory and uses this keystore afterwards.

Providing a Java Keystore

When no keystore file is explicitly configured, but http-enabled is set to false, Keycloak looks for a
conf/server.keystore file.

As an alternative, you can use an existing keystore by running the following command:

bin/kc.[sh|bat] start --https-key-store-file=/path/to/existing-keystore-file

Setting the Keystore password

You can set a secure password for your keystore using the https-key-store-password option:

bin/kc.[sh|bat] start --https-key-store-password=<value>

If no password is set, the default password password is used.

Configuring TLS protocols
By default, Keycloak does not enable deprecated TLS protocols. If your client supports only
deprecated protocols, consider upgrading the client. However, as a temporary work-around, you
can enable deprecated protocols by running the following command:

55

bin/kc.[sh|bat] start --https-protocols=<protocol>[,<protocol>]

To also allow TLSv1.2, use a command such as the following: kc.sh start --https
-protocols=TLSv1.3,TLSv1.2.

Switching the HTTPS port
Keycloak listens for HTTPS traffic on port 8443. To change this port, use the following command:

bin/kc.[sh|bat] start --https-port=<port>

Using a truststore
In order to properly validate client certificates and enable certain authentication methods like two-
way TLS or mTLS, you can set a trust store with all the certificates (and certificate chain) the server
should be trusting. There are number of capabilities that rely on this trust store to properly
authenticate clients using certificates such as:

• Mutual-TLS Client Authentication

• End-User X.509 Browser Authentication

You can configure the location of this truststore by running the following command:

bin/kc.[sh|bat] start --https-trust-store-file=/path/to/file

Note that this trust store is targeted for authenticating clients where Keycloak is acting as a server.
For configuring a trust store where Keycloak is acting as a client to external services through TLS,
please consider looking at the Configuring a Truststore guide.

Setting the truststore password

You can set a secure password for your truststore using the https-trust-store-password option:

bin/kc.[sh|bat] start --https-trust-store-password=<value>

If no password is set, the default password password is used.

Securing credentials
Avoid setting a password in plaintext by using the CLI or adding it to conf/keycloak.conf file.
Instead use good practices such as using a vault / mounted secret. For more detail, see the Vault
Guide / Production deployment guide.

56

Enabling mutual TLS
Authentication using mTLS is disabled by default. To enable mTLS certificate handling when
Keycloak is the server and needs to validate certificates from requests made to Keycloaks
endpoints, put the appropriate certificates in Keycloaks truststore and use the following command
to enable mTLS:

bin/kc.[sh|bat] start --https-client-auth=<none|request|required>

Using the value required sets up Keycloak to always ask for certificates and fail if no certificate is
provided in a request. By setting the value to request, Keycloak will also accept requests without a
certificate and only validate the correctness of a certificate if it exists.

Be aware that this is the basic certificate configuration for mTLS use cases where Keycloak acts as
server. When Keycloak acts as client instead, e.g. when Keycloak tries to get a token from a token
endpoint of a brokered identity provider that is secured by mTLS, you need to set up the HttpClient
to provide the right certificates in the keystore for the outgoing request. To configure mTLS in these
scenarios, see the Configuring outgoing HTTP requests guide.

Relevant options

Type Default

http-enabled

Enables the HTTP listener.

CLI: --http-enabled

Env: KC_HTTP_ENABLED

true, false false

https-certificate-file

The file path to a server certificate or certificate chain
in PEM format.

CLI: --https-certificate-file

Env: KC_HTTPS_CERTIFICATE_FILE

https-certificate-key-file

The file path to a private key in PEM format.

CLI: --https-certificate-key-file

Env: KC_HTTPS_CERTIFICATE_KEY_FILE

57

Type Default

https-cipher-suites

The cipher suites to use.

If none is given, a reasonable default is selected.

CLI: --https-cipher-suites

Env: KC_HTTPS_CIPHER_SUITES

https-client-auth

Configures the server to require/request client
authentication.

CLI: --https-client-auth

Env: KC_HTTPS_CLIENT_AUTH

none, request,
required

none

https-key-store-file

The key store which holds the certificate information
instead of specifying separate files.

CLI: --https-key-store-file

Env: KC_HTTPS_KEY_STORE_FILE

https-key-store-password

The password of the key store file.

CLI: --https-key-store-password

Env: KC_HTTPS_KEY_STORE_PASSWORD

password

https-key-store-type

The type of the key store file.

If not given, the type is automatically detected based
on the file name.

CLI: --https-key-store-type

Env: KC_HTTPS_KEY_STORE_TYPE

58

Type Default

https-port

The used HTTPS port.

CLI: --https-port

Env: KC_HTTPS_PORT

8443

https-protocols

The list of protocols to explicitly enable.

CLI: --https-protocols

Env: KC_HTTPS_PROTOCOLS

TLSv1.3

https-trust-store-file

The trust store which holds the certificate information
of the certificates to trust.

CLI: --https-trust-store-file

Env: KC_HTTPS_TRUST_STORE_FILE

https-trust-store-password

The password of the trust store file.

CLI: --https-trust-store-password

Env: KC_HTTPS_TRUST_STORE_PASSWORD

https-trust-store-type

The type of the trust store file.

If not given, the type is automatically detected based
on the file name.

CLI: --https-trust-store-type

Env: KC_HTTPS_TRUST_STORE_TYPE

59

Configuring a Truststore
When Keycloak communicates with external services through TLS, it has to validate the remote
server’s certificate in order to ensure it is connecting to a trusted server. This is necessary in order
to prevent man-in-the-middle attacks. The certificates of these remote server’s or the CA that signed
these certificates must be put in a truststore. This truststore is managed by the Keycloak server.

The truststore is used when connecting securely to identity brokers, LDAP identity providers, when
sending emails, and for backchannel communication with client applications. It is also useful when
you want to change the policy on how host names are verified and trusted by the server.

By default, a truststore provider is not configured, and any TLS/HTTPS connections fall back to
standard Java Truststore configuration. If there is no trust established, then these outgoing requests
will fail.

Configuring the Keycloak Truststore
You can add your truststore configuration by entering this command:

bin/kc.[sh|bat] start --spi-truststore-file-file=myTrustStore.jks --spi-truststore
-file-password=password --spi-truststore-file-hostname-verification-policy=ANY

The following are possible configuration options for this setting:

file

The path to a Java keystore file. HTTPS requests need a way to verify the host of the server to
which they are talking. This is what the truststore does. The keystore contains one or more
trusted host certificates or certificate authorities. This truststore file should only contain public
certificates of your secured hosts. This is REQUIRED if any of these properties are defined.

password

Password of the keystore. This option is REQUIRED if any of these properties are defined.

hostname-verification-policy

For HTTPS requests, this option verifies the hostname of the server’s certificate. Default:
WILDCARD

• ANY means that the hostname is not verified.

• WILDCARD allows wildcards in subdomain names, such as *.foo.com.

• When using STRICT, the Common Name (CN) must match the hostname exactly.

Example of a truststore configuration

The following is an example configuration for a truststore that allows you to create trustful
connections to all mycompany.org domains and its subdomains:

60

bin/kc.[sh|bat] start --spi-truststore-file-file=path/to/truststore.jks --spi
-truststore-file-password=change_me --spi-truststore-file-hostname-verification
-policy=WILDCARD

61

Configuring distributed caches
Keycloak is designed for high availability and multi-node clustered setups. The current distributed
cache implementation is built on top of Infinispan, a high-performance, distributable in-memory
data grid.

Enable distributed caching
When you start Keycloak in production mode, by using the start command, caching is enabled and
all Keycloak nodes in your network are discovered.

By default, caches are using a UDP transport stack so that nodes are discovered using IP multicast
transport based on UDP. For most production environments, there are better discovery alternatives
to UDP available. Keycloak allows you to either choose from a set of pre-defined default transport
stacks, or to define your own custom stack, as you will see later in this guide.

To explicitly enable distributed infinispan caching, enter this command:

bin/kc.[sh|bat] build --cache=ispn

When you start Keycloak in development mode, by using the start-dev command, Keycloak uses
only local caches and distributed caches are completely disabled by implicitly setting the
--cache=local option. The local cache mode is intended only for development and testing purposes.

Configuring caches
Keycloak provides a cache configuration file with sensible defaults located at conf/cache-ispn.xml.

The cache configuration is a regular Infinispan configuration file.

The following table gives an overview of the specific caches Keycloak uses. You configure these
caches in conf/cache-ispn.xml:

Cache name Cache Type Description

realms Local Cache persisted realm data

users Local Cache persisted user data

authorization Local Cache persisted authorization
data

keys Local Cache external public keys

work Replicated Propagate invalidation
messages across nodes

62

https://infinispan.org
https://infinispan.org/docs/stable/titles/configuring/configuring.html

authenticationSessions Distributed Caches authentication sessions,
created/destroyed/expired
during the authentication
process

sessions Distributed Caches user sessions, created
upon successful authentication
and destroyed during logout,
token revocation, or due to
expiration

clientSessions Distributed Caches client sessions, created
upon successful authentication
to a specific client and
destroyed during logout, token
revocation, or due to expiration

offlineSessions Distributed Caches offline user sessions,
created upon successful
authentication and destroyed
during logout, token revocation,
or due to expiration

offlineClientSessions Distributed Caches client sessions, created
upon successful authentication
to a specific client and
destroyed during logout, token
revocation, or due to expiration

loginFailures Distributed keep track of failed logins, fraud
detection

actionTokens Distributed Caches action Tokens

Cache types and defaults

Local caches

Keycloak caches persistent data locally to avoid unnecessary round-trips to the database.

The following data is kept local to each node in the cluster using local caches:

• realms and related data like clients, roles, and groups.

• users and related data like granted roles and group memberships.

• authorization and related data like resources, permissions, and policies.

• keys

Local caches for realms, users, and authorization are configured to hold up to 10,000 entries per
default. The local key cache can hold up to 1,000 entries per default and defaults to expire every
one hour. Therefore, keys are forced to be periodically downloaded from external clients or
identity providers.

63

In order to achieve an optimal runtime and avoid additional round-trips to the database you should
consider looking at the configuration for each cache to make sure the maximum number of entries
is aligned with the size of your database. More entries you can cache, less often the server needs to
fetch data from the database. You should evaluate the trade-offs between memory utilization and
performance.

Invalidation of local caches

Local caching improves performance, but adds a challenge in multi-node setups.

When one Keycloak node updates data in the shared database, all other nodes need to be aware of
it, so they invalidate that data from their caches.

The work cache is a replicated cache and used for sending these invalidation messages. The
entries/messages in this cache are very short-lived, and you should not expect this cache growing in
size over time.

Authentication sessions

Authentication sessions are created whenever a user tries to authenticate. They are automatically
destroyed once the authentication process completes or due to reaching their expiration time.

The authenticationSessions distributed cache is used to store authentication sessions and any other
data associated with it during the authentication process.

By relying on a distributable cache, authentication sessions are available to any node in the cluster
so that users can be redirected to any node without losing their authentication state. However,
production-ready deployments should always consider session affinity and favor redirecting users
to the node where their sessions were initially created. By doing that, you are going to avoid
unnecessary state transfer between nodes and improve CPU, memory, and network utilization.

User sessions

Once the user is authenticated, a user session is created. The user session tracks your active users
and their state so that they can seamlessly authenticate to any application without being asked for
their credentials again. For each application, the user authenticates with a client session is created
too, so that the server can track the applications the user is authenticated with and their state on a
per-application basis.

User and client sessions are automatically destroyed whenever the user performs a logout, the
client performs a token revocation, or due to reaching their expiration time.

The following caches are used to store both user and client sessions:

• sessions

• clientSessions

By relying on a distributable cache, user and client sessions are available to any node in the cluster
so that users can be redirected to any node without loosing their state. However, production-ready
deployments should always consider session affinity and favor redirecting users to the node where
their sessions were initially created. By doing that, you are going to avoid unnecessary state
transfer between nodes and improve CPU, memory, and network utilization.

64

As an OpenID Connect Provider, the server is also capable of authenticating users and issuing
offline tokens. Similarly to regular user and client sessions, when an offline token is issued by the
server upon successful authentication, the server also creates a user and client sessions. However,
due to the nature of offline tokens, offline sessions are handled differently as they are long-lived
and should survive a complete cluster shutdown. Because of that, they are also persisted to the
database.

The following caches are used to store offline sessions:

• offlineSessions

• offlineClientSessions

Upon a cluster restart, offline sessions are lazily loaded from the database and kept in a shared
cache using the two caches above.

Password brute force detection

The loginFailures distributed cache is used to track data about failed login attempts. This cache is
needed for the Brute Force Protection feature to work in a multi-node Keycloak setup.

Action tokens

Action tokens are used for scenarios when a user needs to confirm an action asynchronously, for
example in the emails sent by the forgot password flow. The actionTokens distributed cache is used
to track metadata about action tokens.

Configuring caches for availability

Distributed caches replicate cache entries on a subset of nodes in a cluster and assigns entries to
fixed owner nodes.

Each distributed cache has two owners per default, which means that two nodes have a copy of the
specific cache entries. Non-owner nodes query the owners of a specific cache to obtain data. When
both owner nodes are offline, all data is lost. This situation usually leads to users being logged out
at the next request and having to log in again.

The default number of owners is enough to survive 1 node (owner) failure in a cluster setup with at
least three nodes. You are free to change the number of owners accordingly to better fit into your
availability requirements. To change the number of owners, open conf/cache-ispn.xml and change
the value for owners=<value> for the distributed caches to your desired value.

Specify your own cache configuration file

To specify your own cache configuration file, enter this command:

bin/kc.[sh|bat] build --cache-config-file=my-cache-file.xml

The configuration file is relative to the conf/ directory.

65

Transport stacks
Transport stacks ensure that distributed cache nodes in a cluster communicate in a reliable fashion.
Keycloak supports a wide range of transport stacks:

• tcp

• udp

• kubernetes

• ec2

• azure

• google

To apply a specific cache stack, enter this command:

bin/kc.[sh|bat] build --cache-stack=<stack>

The default stack is set to UDP when distributed caches are enabled.

Available transport stacks

The following table shows transport stacks that are available without any further configuration
than using the --cache-stack build option:

Stack name Transport protocol Discovery

tcp TCP MPING (uses UDP multicast).

udp UDP UDP multicast

The following table shows transport stacks that are available using the --cache-stack build option
and a minimum configuration:

Stack name Transport protocol Discovery

kubernetes TCP DNS_PING (requires
-Djgroups.dns.query=<headless
-service-FQDN> to be added to
JAVA_OPTS or
JAVA_OPTS_APPEND
environment variable).

Additional transport stacks

The following table shows transport stacks that are supported by Keycloak, but need some extra
steps to work. Note that none of these stacks are Kubernetes / OpenShift stacks, so no need exists to
enable the "google" stack if you want to run Keycloak on top of the Google Kubernetes engine. In
that case, use the kubernetes stack. Instead, when you have a distributed cache setup running on

66

AWS EC2 instances, you would need to set the stack to ec2, because ec2 does not support a default
discovery mechanism such as UDP.

Stack name Transport protocol Discovery

ec2 TCP NATIVE_S3_PING

google TCP GOOGLE_PING2

azure TCP AZURE_PING

Cloud vendor specific stacks have additional dependencies for Keycloak. For more information and
links to repositories with these dependencies, see the Infinispan documentation.

To provide the dependencies to Keycloak, put the respective JAR in the providers directory and
build Keycloak by entering this command:

bin/kc.[sh|bat] build --cache-stack=<ec2|google|azure>

Custom transport stacks

If none of the available transport stacks are enough for your deployment, you are able to change
your cache configuration file and define your own transport stack.

For more details, see Using inline JGroups stacks.

defining a custom transport stack

<jgroups>
 <stack name="my-encrypt-udp" extends="udp">
 <SSL_KEY_EXCHANGE keystore_name="server.jks"
 keystore_password="password"
 stack.combine="INSERT_AFTER"
 stack.position="VERIFY_SUSPECT"/>
 <ASYM_ENCRYPT asym_keylength="2048"
 asym_algorithm="RSA"
 change_key_on_coord_leave = "false"
 change_key_on_leave = "false"
 use_external_key_exchange = "true"
 stack.combine="INSERT_BEFORE"
 stack.position="pbcast.NAKACK2"/>
 </stack>
</jgroups>

<cache-container name="keycloak">
 <transport lock-timeout="60000" stack="my-encrypt-udp"/>
 ...
</cache-container>

By default, the value set to the cache-stack option has precedence over the transport stack you

67

https://infinispan.org/docs/dev/titles/embedding/embedding.html#jgroups-cloud-discovery-protocols_cluster-transport
https://infinispan.org/docs/stable/titles/server/server.html#using-inline-jgroups-stacks_cluster-transport

define in the cache configuration file. If you are defining a custom stack, make sure the cache-stack
option is not used for the custom changes to take effect.

Securing cache communication

The current Infinispan cache implementation should be secured by various security measures such
as RBAC, ACLs, and Transport stack encryption. For more information about securing cache
communication, see the Infinispan security guide.

Relevant options

Type Default

cache

Defines the cache mechanism for high-availability.

By default, a 'ispn' cache is used to create a cluster
between multiple server nodes. A 'local' cache disables
clustering and is intended for development and testing
purposes.

CLI: --cache

Env: KC_CACHE

ispn, local ispn

cache-config-file

Defines the file from which cache configuration should
be loaded from.

The configuration file is relative to the 'conf/'
directory.

CLI: --cache-config-file

Env: KC_CACHE_CONFIG_FILE

cache-stack

Define the default stack to use for cluster
communication and node discovery.

This option only takes effect if 'cache' is set to 'ispn'.
Default: udp.

CLI: --cache-stack

Env: KC_CACHE_STACK

tcp, udp,
kubernetes, ec2,
azure, google

68

https://infinispan.org/docs/dev/titles/security/security.html#

Configuring logging
Keycloak uses the JBoss Logging framework. The following is a high-level overview for the available
log handlers:

• root

◦ console (default)

◦ file

◦ GELF

Logging configuration
Logging is done on a per-category basis in Keycloak. You can configure logging for the root log level
or for more specific categories such as org.hibernate or org.keycloak. This guide describes how to
configure logging.

Log levels

The following table defines the available log levels.

Level Description

FATAL Critical failures with complete inability to serve
any kind of request.

ERROR A significant error or problem leading to the
inability to process requests.

WARN A non-critical error or problem that might not
require immediate correction.

INFO Keycloak lifecycle events or important
information. Low frequency.

DEBUG More detailed information for debugging
purposes, such as database logs. Higher
frequency.

TRACE Most detailed debugging information. Very high
frequency.

ALL Special level for all log messages.

OFF Special level to turn logging off entirely (not
recommended).

Configuring the root log level

When no log level configuration exists for a more specific category logger, the enclosing category is
used instead. When there is no enclosing category, the root logger level is used.

69

To set the root log level, enter the following command:

bin/kc.[sh|bat] start --log-level=<root-level>

Use these guidelines for this command:

• For <root-level>, supply a level defined in the preceding table.

• The log level is case-insensitive. For example, you could either use DEBUG or debug.

• If you were to accidentally set the log level twice, the last occurrence in the list becomes the log
level. For example, if you included the syntax --log-level=info,…,DEBUG,…, the root logger
would be DEBUG.

Configuring category-specific log levels

You can set different log levels for specific areas in Keycloak. Use this command to provide a
comma-separated list of categories for which you want a different log level:

bin/kc.[sh|bat] start --log-level=<root-level>,<org.category1>:<org.category1-level>

A configuration that applies to a category also applies to its sub-categories unless you include a
more specific matching sub-category.

Example

bin/kc.[sh|bat] start --log
-level=INFO,org.hibernate:debug,org.hibernate.hql.internal.ast:info

This example sets the following log levels:

• Root log level for all loggers is set to INFO.

• The hibernate log level in general is set to debug.

• To keep SQL abstract syntax trees from creating verbose log output, the specific subcategory
org.hibernate.hql.internal.ast is set to info. As a result, the SQL abstract syntax trees are
omitted instead of appearing at the debug level.

Enabling log handlers
To enable log handlers, enter the following command:

bin/kc.[sh|bat] start --log=<handler1>,<handler2>

The available handlers are console, file and gelf. The more specific handler configuration
mentioned below will only take effect when the handler is added to this comma-separated list.

70

Console log handler
The console log handler is enabled by default, providing unstructured log messages for the console.

Configuring the console log format

Keycloak uses a pattern-based logging formatter that generates human-readable text logs by
default.

The logging format template for these lines can be applied at the root level. The default format
template is:

• %d{yyyy-MM-dd HH:mm:ss,SSS} %-5p [%c] (%t) %s%e%n

The format string supports the symbols in the following table:

Symbol Summary Description

%% % Renders a simple % character.

%c Category Renders the log category name.

%d{xxx} Date Renders a date with the given
date format string.String syntax
defined by
java.text.SimpleDateFormat

%e Exception Renders a thrown exception.

%h Hostname Renders the simple host name.

%H Qualified host name Renders the fully qualified
hostname, which may be the
same as the simple host name,
depending on the OS
configuration.

%i Process ID Renders the current process
PID.

%m Full Message Renders the log message and an
exception, if thrown.

%n Newline Renders the platform-specific
line separator string.

%N Process name Renders the name of the
current process.

%p Level Renders the log level of the
message.

%r Relative time Render the time in milliseconds
since the start of the application
log.

71

%s Simple message Renders only the log message
without exception trace.

%t Thread name Renders the thread name.

%t{id} Thread ID Render the thread ID.

%z{<zone name>} Timezone Set the time zone of log output
to <zone name>.

%L Line number Render the line number of the
log message.

Setting the logging format

To set the logging format for a logged line, perform these steps:

1. Build your desired format template using the preceding table.

2. Enter the following command:

bin/kc.[sh|bat] start --log-format="'<format>'"

Note that you need to escape characters when invoking commands containing special shell
characters such as ; using the CLI. Therefore, consider setting it in the configuration file instead.

Example: Abbreviate the fully qualified category name

bin/kc.[sh|bat] start --log-console-format="'%d{yyyy-MM-dd HH:mm:ss,SSS} %-5p [%c{3.}]
(%t) %s%e%n'"

This example abbreviates the category name to three characters by setting [%c{3.}] in the template
instead of the default [%c].

Configuring JSON or plain console logging

By default, the console log handler logs plain unstructured data to the console. To use structured
JSON log output instead, enter the following command:

bin/kc.[sh|bat] start --log-console-output=json

Example Log Message

{"timestamp":"2022-02-
25T10:31:32.452+01:00","sequence":8442,"loggerClassName":"org.jboss.logging.Logger","l
oggerName":"io.quarkus","level":"INFO","message":"Keycloak 18.0.0-SNAPSHOT on JVM
(powered by Quarkus 2.7.2.Final) started in 3.253s. Listening on:
http://0.0.0.0:8080","threadName":"main","threadId":1,"mdc":{},"ndc":"","hostName":"ho
st-name","processName":"QuarkusEntryPoint","processId":36946}

72

When using JSON output, colors are disabled and the format settings set by --log-console-format
will not apply.

To use unstructured logging, enter the following command:

bin/kc.[sh|bat] start --log-console-output=default

Example Log Message:

2022-03-02 10:36:50,603 INFO [io.quarkus] (main) Keycloak 18.0.0-SNAPSHOT on JVM
(powered by Quarkus 2.7.2.Final) started in 3.615s. Listening on: http://0.0.0.0:8080

Colors

Colored console log output for unstructured logs is disabled by default. Colors may improve
readability, but they can cause problems when shipping logs to external log aggregation systems. To
enable or disable color-coded console log output, enter following command:

bin/kc.[sh|bat] start --log-console-color=<false|true>

File logging
As an alternative to logging to the console, you can use unstructured logging to a file.

Enable file logging

Logging to a file is disabled by default. To enable it, enter the following command:

bin/kc.[sh|bat] start --log=console,file

A log file named keycloak.log is created inside the data/log directory of your Keycloak installation.

Configuring the location and name of the log file

To change where the log file is created and the file name, perform these steps:

1. Create a writable directory to store the log file.

If the directory is not writable, Keycloak will start correctly, but it will issue an error and no log
file will be created.

2. Enter this command:

bin/kc.[sh|bat] start --log=console,file --log-file=<path-to>/<your-file.log>

73

Configuring the file handler format

To configure a different logging format for the file log handler, enter the following command:

bin/kc.[sh|bat] start --log-file-format=<pattern>

Please see the Configuring the console log format section in this guide for more information and a
table of the available pattern configuration.

Centralized logging using GELF
Keycloak can send logs to a centralized log management system such as the following:

• Graylog

• Logstash, inside the Elasticsearch, Logstash, Kibana (ELK) logging stack

• Fluentd, inside the Elasticsearch, Fluentd, Kibana (EFK) logging stack

Keycloak uses the Quarkus Logging GELF extension to support these environments.

Enabling the GELF handler

To enable logging using GELF, add it to the list of activated log handlers.

Example:

bin/kc.[sh|bat] start --log=console,gelf

Configuring the GELF handler

To configure the Host and Port of your centralized logging system, enter the following command
and substitute the values with your specific values: .Host and port of the GELF server:

bin/kc.[sh|bat] start --log=console,gelf --log-gelf-host=myhost --log-gelf-port=12345

When the GELF handler is enabled, the host is using localhost as host value and UDP for
communication. To use TCP instead of UDP, prefix the host value with tcp:. The Default port is
12201.

Include or exclude Stacktraces

Keycloak includes the complete Stacktrace inside the StackTrace field. To exclude this field, enter
the following command:

bin/kc.[sh|bat] start --log=console,gelf --log-gelf-include-stack-trace=false

Configure the timestamp format

74

https://quarkus.io/guides/centralized-log-management

You can change the format of the timestamp field. For example, you can include the date and time
down to seconds by entering the following command:

bin/kc.[sh|bat] start --log=console,gelf --log-gelf-timestamp-format="'yyyy-MM-dd
HH:mm:ss'"

Alternatively, you could use the config file to avoid escaping:

log-gelf-timestamp-format=yyyy-MM-dd HH:mm:ss

The default timestamp format is yyyy-MM-dd HH:mm:ss,SSS. You can use the available
SimpleDateFormat patterns to define an appropriate timestamp.

Configure the facility

The facility field is an indicator of the process or program that is the source of log messages. The
default value is keycloak. To set this field to your preferred identifier, enter the following command:

bin/kc.[sh|bat] start --log=console,gelf --log-gelf-facility=MyKeycloak

To use the CLI to configure Keycloak and use whitespaces for facility, enter the following
command:

bin/kc.[sh|bat] start --log=console,gelf --log-gelf-facility="'my keycloak'"

Alternatively, you could use the config file to avoid escaping:

log-gelf-facility=my keycloak

Configure the default message size

To change the default message size of 8kb (8192 bytes) of GELF log messages for Keycloak, enter the
following command:

bin/kc.[sh|bat] start --log=console,gelf --log-gelf-max-message-size=16384

The maximum size of one GELF log message is set in Bytes. The preceding example increases the
size to 16kb. When messages exceed the maximum size, GELF submits the message in multiple
chunks.

Configure sending of message parameters

Keycloak includes message parameters of the occurred log event. These fields appear in the output
as MessageParam0, MessageParam1, and so on, depending on the parameter length. To switch off this
behavior, enter the following command:

75

https://docs.oracle.com/javase/10/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/10/docs/api/java/text/SimpleDateFormat.html

bin/kc.[sh|bat] start --log=console,gelf --log-gelf-include-message-parameters=false

Configure sending of source code location

Keycloak includes the SourceClassName, SourceMethodName and SourceSimpleClassName fields in the
GELF log messages. These fields provide detail on the location of an exception that occurred. To
stop sending these fields, enter the following command:

bin/kc.[sh|bat] start --log=console,gelf --log-gelf-include-location=false

Example: Send logs to Graylog

The following example shows how to send Keycloak logs to the Graylog centralized logging stack.
This example assumes you have a container tool such as docker installed to start the compose.yml.

Starting the Graylog stack

The composed stack consists of:

• Graylog

• ElasticSearch

• MongoDB

version: '3.8'

services:
 elasticsearch:
 image: docker.io/elastic/elasticsearch:7.10.2
 ports:
 - "9200:9200"
 environment:
 ES_JAVA_OPTS: "-Xms512m -Xmx512m"
 discovery.type: "single-node"
 networks:
 - graylog

 mongo:
 image: mongo:4.4
 networks:
 - graylog

 graylog:
 image: graylog/graylog:4.3.3
 ports:
 - "9000:9000"
 - "12201:12201/udp"
 - "1514:1514"

76

https://www.docker.com/

 environment:
 GRAYLOG_HTTP_EXTERNAL_URI: "http://127.0.0.1:9000/"
 # CHANGE ME (must be at least 16 characters)!
 GRAYLOG_PASSWORD_SECRET: "forpasswordencryption"
 # Password: admin
 GRAYLOG_ROOT_PASSWORD_SHA2:
"8c6976e5b5410415bde908bd4dee15dfb167a9c873fc4bb8a81f6f2ab448a918"
 networks:
 - graylog
 depends_on:
 - elasticsearch
 - mongo

networks:
 graylog:
 driver: bridge

Copy and save the example locally into a compose.yml file and enter this command:

docker compose up -d

After a few seconds, the Stack is ready to serve requests.

Creating a Graylog UDP Input

Once the stack is running, you need to create a UDP Input Graylog listens to. You can create it from
the Graylog web UI (System → Input → Select GELF UDP) available at http://localhost:9000 or using
the API:

This curl example creates a new GELF UDP Input using the API and the default Graylog login
credentials (admin/admin).

curl -H "Content-Type: application/json" -H "Authorization: Basic YWRtaW46YWRtaW4=" -H
"X-Requested-By: curl" -X POST -v -d \
'{"title":"udp
input","configuration":{"recv_buffer_size":262144,"bind_address":"0.0.0.0","port":1220
1,"decompress_size_limit":8388608},"type":"org.graylog2.inputs.gelf.udp.GELFUDPInput",
"global":true}' \
http://localhost:9000/api/system/inputs

If the stack is still in the bootstrap phase, you receive a response containing * Empty reply from
server. A successful response includes HTTP/1.1 201 Created to indicate that the UDP input is
created.

Configure Keycloak to send logs using GELF

Keycloak needs to be configured to send logs using GELF. The appropriate configuration can be
seen in the following keycloak.conf example. The example includes the log-gelf-host and log-gelf-

77

http://localhost:9000

port values. These are optional values that are included for illustration purposes; default values
exist.

Keycloak GELF Configuration

log=console,gelf
log-gelf-host=localhost
log-gelf-port=12201

Graylog: See the results

1. Open your web browser, go to http://localhost:9000.

2. Log in to the Graylog web UI using the administrator credentials (admin/admin).

3. Go to Streams, All Messages.

4. Start updating the stream by pressing the Play button in the upper right corner.

5. Start Keycloak using start or start-dev and your GELF config.

After a few seconds, Keycloak messages appear in the Graylog dashboard.

Example Setup using the ELK Stack

The following example shows how to send Keycloak logs to the ELK centralized logging stack. It
assumes you have a container tool such as docker installed to start the compose.yml.

Enable the logstash GELF plugin and create a pipeline

Logstash uses an input plugin that understands and parses the GELF format. To activate this plugin
when you are starting the ELK stack later on, create a directory pipelines and a file gelf.conf
located in this directory. Then create an empty compose.yml in the parent directory.

File Structure:

/ELK
 - compose.yml
 - pipelines/
 - gelf.conf

Add the following contents to pipelines/gelf.conf and save it:

input {
 gelf {
 port => 12201
 }
}
output {
 stdout {}
 elasticsearch {

78

http://localhost:9000
https://www.docker.com/

 hosts => ["http://elasticsearch:9200"]
 }
}

This file activates and configures the logstash GELF plugin and points it to the right elasticsearch
instance.

Starting the ELK stack

The composed stack consists of:

• ElasticSearch

• Logstash

• Kibana

Copy the following content to your compose.yml file:

Launch Elasticsearch
version: '3.8'

services:
 elasticsearch:
 image: docker.elastic.co/elasticsearch/elasticsearch-oss:6.8.2
 ports:
 - "9200:9200"
 - "9300:9300"
 environment:
 ES_JAVA_OPTS: "-Xms512m -Xmx512m"
 networks:
 - elk

 logstash:
 image: docker.elastic.co/logstash/logstash-oss:6.8.2
 volumes:
 - source: ./pipelines #the source dir gelf.conf resides
 target: /usr/share/logstash/pipeline
 type: bind
 ports:
 - "12201:12201/udp"
 - "5000:5000"
 - "9600:9600"
 networks:
 - elk
 depends_on:
 - elasticsearch

 kibana:
 image: docker.elastic.co/kibana/kibana-oss:6.8.2
 ports:

79

 - "5601:5601"
 networks:
 - elk
 depends_on:
 - elasticsearch

networks:
 elk:
 driver: bridge

Start the stack by entering the following command:

docker compose up -d

After a few seconds the Stack should be ready to serve requests.

Configuring Keycloak to send logs using GELF

Keycloak needs to be configured to send logs using GELF. The appropriate configuration can be
seen in the following keycloak.conf example. This example includes the log-gelf-host and log-
gelf-port values. These are optional values, which are included for illustration purposes; default
values exist.

Keycloak Gelf Configuration

log=console,gelf
log-gelf-host=localhost
log-gelf-port=12201

With this configuration applied, start keycloak using start-dev or start.

Kibana: See the results

Open http://localhost:5601 to reach the Kibana dashboard. The exact configuration of a good
monitoring dashboard is out of scope for this guide. To find out if logs sent by Keycloak are
delivered to Kibana, open the Dev Tools and execute the default match_all query. The logs should
appear in the result field.

Configure a different log level for the GELF logger

To keep log storage costs and verbosity low, it is often wanted to only store a subset of the verbose
application logs inside a centralized log management system. To configure Keycloak to use a
different log level for the logs you want to ingest, use the following configuration:

log=console,gelf
log-gelf-level=<desired-log-level>
...

80

http://localhost:5601
http://localhost:5601/app/kibana#/dev_tools/console?_g=()

Example

To only see occurred log levels of warn and above in your centralized logging stack, but still see
INFO level logs on the applications console logs, use the following configuration:

log=console,gelf
log-level=INFO
log-gelf-level=warn
...

Looking at your ingested logs, you will see only messages of level warn or above will appear.

Keep in mind that --log-level is setting the leading log level, so for example when you invoke the
following command:

bin/kc.[sh|bat] start --log=console,gelf, log-level=error, log-gelf-level=info

nothing below the error level will be sent to your logging stack. That means that even GELF in this
example will receive only error level log messages.

Configure additional key values

Currently, the Keycloak configuration does not support partly dynamic configuration keys, as they
are used in quarkus properties. For example, they are used when defining
quarkus.log.handler.gelf.additional-field.<my-name>.value.

To add user-defined fields, you can provide these fields through a quarkus.properties file. Refer to
the Configuring Keycloak guide and the Using unsupported server options section.

Relevant options

Type Default

log-console-color

Enable or disable colors when logging to console.

CLI: --log-console-color

Env: KC_LOG_CONSOLE_COLOR

true, false false

81

Type Default

log-console-format

The format of unstructured console log entries.

If the format has spaces in it, escape the value using
"<format>".

CLI: --log-console-format

Env: KC_LOG_CONSOLE_FORMAT

%d{yyyy-MM-dd
HH:mm:ss,SSS}
%-5p [%c] (%t)
%s%e%n

log-console-output

Set the log output to JSON or default (plain)
unstructured logging.

CLI: --log-console-output

Env: KC_LOG_CONSOLE_OUTPUT

default, json default

log-file

Set the log file path and filename.

CLI: --log-file

Env: KC_LOG_FILE

data/log/keycloak.
log

log-file-format

Set a format specific to file log entries.

CLI: --log-file-format

Env: KC_LOG_FILE_FORMAT

%d{yyyy-MM-dd
HH:mm:ss,SSS}
%-5p [%c] (%t)
%s%e%n

log-file-output

Set the log output to JSON or default (plain)
unstructured logging.

CLI: --log-file-output

Env: KC_LOG_FILE_OUTPUT

default, json default

82

Type Default

log-gelf-facility

The facility (name of the process) that sends the
message.

CLI: --log-gelf-facility

Env: KC_LOG_GELF_FACILITY

keycloak

log-gelf-host

Hostname of the Logstash or Graylog Host.

By default UDP is used, prefix the host with 'tcp:' to
switch to TCP. Example: 'tcp:localhost'

CLI: --log-gelf-host

Env: KC_LOG_GELF_HOST

localhost

log-gelf-include-location

Include source code location.

CLI: --log-gelf-include-location

Env: KC_LOG_GELF_INCLUDE_LOCATION

true, false true

log-gelf-include-message-parameters

Include message parameters from the log event.

CLI: --log-gelf-include-message-parameters

Env: KC_LOG_GELF_INCLUDE_MESSAGE_PARAMETERS

true, false true

log-gelf-include-stack-trace

If set to true, occuring stack traces are included in the
'StackTrace' field in the GELF output.

CLI: --log-gelf-include-stack-trace

Env: KC_LOG_GELF_INCLUDE_STACK_TRACE

true, false true

83

Type Default

log-gelf-level

The log level specifying which message levels will be
logged by the GELF logger.

Message levels lower than this value will be discarded.

CLI: --log-gelf-level

Env: KC_LOG_GELF_LEVEL

INFO

log-gelf-max-message-size

Maximum message size (in bytes).

If the message size is exceeded, GELF will submit the
message in multiple chunks.

CLI: --log-gelf-max-message-size

Env: KC_LOG_GELF_MAX_MESSAGE_SIZE

8192

log-gelf-port

The port the Logstash or Graylog Host is called on.

CLI: --log-gelf-port

Env: KC_LOG_GELF_PORT

12201

log-gelf-timestamp-format

Set the format for the GELF timestamp field.

Uses Java SimpleDateFormat pattern.

CLI: --log-gelf-timestamp-format

Env: KC_LOG_GELF_TIMESTAMP_FORMAT

yyyy-MM-dd
HH:mm:ss,SSS

log-level

The log level of the root category or a comma-separated
list of individual categories and their levels.

For the root category, you don’t need to specify a
category.

CLI: --log-level

Env: KC_LOG_LEVEL

info

84

Configuring outgoing HTTP requests
Keycloak often needs to make requests to the applications and services that it secures. Keycloak
manages these outgoing connections using an HTTP client. This guide shows how to configure the
client, connection pool, proxy environment settings, timeouts, and more.

Client Configuration Command
The HTTP client that Keycloak uses for outgoing communication is highly configurable. To
configure the Keycloak outgoing HTTP client, enter this command:

bin/kc.[sh|bat] start --spi-connections-http-client-default
-<configurationoption>=<value>

The following are the command options:

establish-connection-timeout-millis

Maximum time in milliseconds until establishing a connection times out. Default: Not set.

socket-timeout-millis

Maximum time of inactivity between two data packets until a socket connection times out, in
milliseconds. Default: 5000ms

connection-pool-size

Size of the connection pool for outgoing connections. Default: 128.

max-pooled-per-route

How many connections can be pooled per host. Default: 64.

connection-ttl-millis

Maximum connection time to live in milliseconds. Default: Not set.

max-connection-idle-time-millis

Maximum time an idle connection stays in the connection pool, in milliseconds. Idle connections
will be removed from the pool by a background cleaner thread. Set this option to -1 to disable
this check. Default: 900000.

disable-cookies

Enable or disable caching of cookies. Default: true.

client-keystore

File path to a Java keystore file. This keystore contains client certificates for two-way SSL.

client-keystore-password

Password for the client keystore. REQUIRED, when client-keystore is set.

85

client-key-password

Password for the private key of the client. REQUIRED, when client-keystore is set.

proxy-mappings

Specify proxy configurations for outgoing HTTP requests. For more details, see Proxy mappings
for outgoing HTTP requests.

disable-trust-manager

If an outgoing request requires HTTPS and this configuration option is set to true, you do not
have to specify a truststore. This setting should be used only during development and never in
production because it will disable verification of SSL certificates. Default: false.

Proxy mappings for outgoing HTTP requests
To configure outgoing requests to use a proxy, you can use the following standard proxy
environment variables to configure the proxy mappings: HTTP_PROXY, HTTPS_PROXY, and NO_PROXY.

• The HTTP_PROXY and HTTPS_PROXY variables represent the proxy server that is used for outgoing
HTTP requests. Keycloak does not differentiate between the two variables. If you define both
variables, HTTPS_PROXY takes precedence regardless of the actual scheme that the proxy server
uses.

• The NO_PROXY variable defines a comma separated list of hostnames that should not use the
proxy. For each hostname that you specify, all its subdomains are also excluded from using
proxy.

The environment variables can be lowercase or uppercase. Lowercase takes precedence. For
example, if you define both HTTP_PROXY and http_proxy, http_proxy is used.

Example of proxy mappings and environment variables

HTTPS_PROXY=https://www-proxy.acme.com:8080
NO_PROXY=google.com,login.facebook.com

In this example, the following results occur:

• All outgoing requests use the proxy https://www-proxy.acme.com:8080 except for requests to
google.com or any subdomain of google.com, such as auth.google.com.

• login.facebook.com and all its subdomains do not use the defined proxy, but
groups.facebook.com uses the proxy because it is not a subdomain of login.facebook.com.

Proxy mappings using regular expressions
An alternative to using environment variables for proxy mappings is to configure a comma-
delimited list of proxy-mappings for outgoing requests sent by Keycloak. A proxy-mapping consists
of a regex-based hostname pattern and a proxy-uri, using the format hostname-pattern;proxy-uri.

For example, consider the following regex:

86

https://www-proxy.acme.com:8080

*\.(google|googleapis)\.com

You apply a regex-based hostname pattern by entering this command:

bin/kc.[sh|bat] start --spi-connections-http-client-default-proxy
-mappings="'*\\\.(google|googleapis)\\\.com;http://www-proxy.acme.com:8080'"

To determine the proxy for the outgoing HTTP request, the following occurs:

• The target hostname is matched against all configured hostname patterns.

• The proxy-uri of the first matching pattern is used.

• If no configured pattern matches the hostname, no proxy is used.

When your proxy server requires authentication, include the credentials of the proxy user in the
format username:password@. For example:

.*\.(google|googleapis)\.com;http://proxyuser:password@www-proxy.acme.com:8080

Example of regular expressions for proxy-mapping:

All requests to Google APIs use http://www-proxy.acme.com:8080 as proxy
.*\.(google|googleapis)\.com;http://www-proxy.acme.com:8080

All requests to internal systems use no proxy
.*\.acme\.com;NO_PROXY

All other requests use http://fallback:8080 as proxy
.*;http://fallback:8080

In this example, the following occurs:

• The special value NO_PROXY for the proxy-uri is used, which means that no proxy is used for
hosts matching the associated hostname pattern.

• A catch-all pattern ends the proxy-mappings, providing a default proxy for all outgoing
requests.

Outgoing HTTPS request truststore
Please take a look at the Configuring a Truststore guide about how to configure a Keycloak
Truststore so that Keycloak is able to perform outgoing requests using TLS.

87

Configuring providers
The server is built with extensibility in mind and for that it provides a number of Service Provider
Interfaces or SPIs, each one responsible for providing a specific capability to the server. In this
guide, you are going to understand the core concepts around the configuration of SPIs and their
respective providers.

After reading this guide, you should be able to use the concepts and the steps herein explained to
install, uninstall, enable, disable, and configure any provider, including those you have
implemented to extend the server capabilities in order to better fulfill your requirements.

Configuration option format
Providers can be configured by using a specific configuration format. The format consists of:

spi-<spi-id>-<provider-id>-<property>=<value>

The <spi-id> is the name of the SPI you want to configure.

The <provider-id> is the id of the provider you want to configure. This is the id set to the
corresponding provider factory implementation.

The <property> is the actual name of the property you want to set for a given provider.

All those names (for spi, provider, and property) should be in lower case and if the name is in
camel-case such as myKeycloakProvider, it should include dashes (-) before upper-case letters as
follows: my-keycloak-provider.

Taking the HttpClientSpi SPI as an example, the name of the SPI is connectionsHttpClient and one of
the provider implementations available is named default. In order to set the connectionPoolSize
property you would use a configuration option as follows:

spi-connections-http-client-default-connection-pool-size=10

Setting a provider configuration option
Provider configuration options are provided when starting the server, as shown in the following
example:

Setting the connection-pool-size for the default provider of the connections-http-client SPI

bin/kc.[sh|bat] start --spi-connections-http-client-default-connection-pool-size=10

88

Configuring a default provider
Depending on the SPI, multiple provider implementations can co-exist but only one of them is going
to be used at runtime. For these SPIs, a default provider is the primary implementation that is going
to be active and used at runtime.

To configure a provider as the default you should run the build command as follows:

Marking the mycustomprovider provider as the default provider for the email-template SPI

bin/kc.[sh|bat] build --spi-email-template-provider=mycustomprovider

In the example above, we are using the provider property to set the id of the provider we want to
mark as the default.

Enabling and disabling a provider
To enable or disable a provider you should run the build command as follows:

Enabling a provider

bin/kc.[sh|bat] build --spi-email-template-mycustomprovider-enabled=true

To disable a provider, use the same command and set the enabled property to false.

Installing and uninstalling a provider
Custom providers should be packaged in a Java Archive (JAR) file and copied to the providers
directory of the distribution. After that, you must run the build command in order to update the
server’s provider registry with the implementations from the JAR file.

This step is needed in order to optimize the server runtime so that all providers are known ahead-
of-time rather than discovered only when starting the server or at runtime.

To uninstall a provider, you should remove the JAR file from the providers directory and run the
build command again.

Using third-party dependencies
When implementing a provider you might need to use some third-party dependency that is not
available from the server distribution.

In this case, you should copy any additional dependency to the providers directory and run the
build command. Once you do that, the server is going to make these additional dependencies
available at runtime for any provider that depends on them.

89

References
• Configuring Keycloak

• Server Developer Documentation

90

https://www.keycloak.org/server/configuration
https://www.keycloak.org/docs/latest/server_development/#_providers

Configuring the database
This guide explains how to configure the Keycloak server to store data in a relational database.

Supported databases
The server has built-in support for different databases. You can query the available databases by
viewing the expected values for the db configuration option. The following table lists the supported
databases and their tested versions.

Database Tested Version

mariadb 10

mssql 2016

mysql 8

oracle 12c

postgres 10

By default, the server uses the dev-file database. This is the default database that the server will
use to persist data and only exists for development use-cases. The dev-file database is not suitable
for production use-cases, and must be replaced before deploying to production.

Configuring a database
For each supported database, the server provides some opinionated defaults to simplify database
configuration. You complete the configuration by providing some key settings such as the database
host and credentials.

1. Build a server image for your database. For example, for a PostgreSQL database, enter this
command:

bin/kc.[sh|bat] build --db postgres

2. Start the server and set the options for the database host and credentials by entering this
command:

bin/kc.[sh|bat] start --db-url-host mypostgres --db-username myuser --db-password
change_me

This command includes the minimum settings needed to connect to the database.

The default schema is keycloak, but you can change it by using the db-schema configuration option.

91

Overriding default connection settings
The server uses JDBC as the underlying technology to communicate with the database. If the default
connection settings are insufficient, you can specify a JDBC URL using the db-url configuration
option.

The following is a sample command for a PostgreSQL database.

bin/kc.[sh|bat] start --db-url jdbc:postgresql://mypostgres/mydatabase

Be aware that you need to escape characters when invoking commands containing special shell
characters such as ; using the CLI, so you might want to set it in the configuration file instead.

Configuring Unicode support for the database
Unicode support for all fields depends on whether the database allows VARCHAR and CHAR fields
to use the Unicode character set.

• If these fields can be set, Unicode is likely to work, usually at the expense of field length.

• If the database only supports Unicode in the NVARCHAR and NCHAR fields, Unicode support for
all text fields is unlikely to work because the server schema uses VARCHAR and CHAR fields
extensively.

The database schema provides support for Unicode strings only for the following special fields:

• Realms: display name, HTML display name, localization texts (keys and values)

• Federation Providers: display name

• Users: username, given name, last name, attribute names and values

• Groups: name, attribute names and values

• Roles: name

• Descriptions of objects

Otherwise, characters are limited to those contained in database encoding, which is often 8-bit.
However, for some database systems, you can enable UTF-8 encoding of Unicode characters and
use the full Unicode character set in all text fields. For a given database, this choice might result in a
shorter maximum string length than the maximum string length supported by 8-bit encodings.

Configuring Unicode support for an Oracle database

Unicode characters are supported in an Oracle database if the database was created with Unicode
support in the VARCHAR and CHAR fields. For example, you configured AL32UTF8 as the database
character set. In this case, the JDBC driver requires no special settings.

If the database was not created with Unicode support, you need to configure the JDBC driver to
support Unicode characters in the special fields. You configure two properties. Note that you can

92

configure these properties as system properties or as connection properties.

1. Set oracle.jdbc.defaultNChar to true.

2. Optionally, set oracle.jdbc.convertNcharLiterals to true.

For details on these properties and any performance implications, see the
Oracle JDBC driver configuration documentation.

Unicode support for a Microsoft SQL Server database

Unicode characters are supported only for the special fields for a Microsoft SQL Server database.
The JDBC driver and database require no special settings.

Configuring Unicode support for a MySQL database

Unicode characters are supported in a MySQL database if the database was created with Unicode
support in the VARCHAR and CHAR fields when using the CREATE DATABASE command.

Note that the utf8mb4 character set is not supported due to different storage requirements for the
utf8 character set. See MySQL documentation for details. In that situation, the length restriction on
non-special fields does not apply because columns are created to accommodate the number of
characters, not bytes. If the database default character set does not allow Unicode storage, only the
special fields allow storing Unicode values.

1. Start MySQL Server.

2. Under JDBC driver settings, locate the JDBC connection settings.

3. Add this connection property: characterEncoding=UTF-8

Configuring Unicode support for a PostgreSQL database

Unicode is supported for a PostgreSQL database when the database character set is UTF8. Unicode
characters can be used in any field with no reduction of field length for non-special fields. The JDBC
driver requires no special settings. The character set is determined when the PostgreSQL database
is created.

1. Check the default character set for a PostgreSQL cluster by entering the following SQL
command.

show server_encoding;

2. If the default character set is not UTF 8, create the database with the UTF8 as the default
character set using a command such as:

create database keycloak with encoding 'UTF8';

93

Changing database locking timeout in a cluster
configuration
Because cluster nodes can boot concurrently, they take extra time for database actions. For
example, a booting server instance may perform some database migration, importing, or first time
initializations. A database lock prevents start actions from conflicting with each other when cluster
nodes boot up concurrently.

The maximum timeout for this lock is 900 seconds. If a node waits on this lock for more than the
timeout, the boot fails. The need to change the default value is unlikely, but you can change it by
entering this command:

bin/kc.[sh|bat] start --spi-dblock-jpa-lock-wait-timeout 900

Using Database Vendors without XA transaction
support
Keycloak uses XA transactions and the appropriate database drivers by default. Certain vendors,
such as Azure SQL and MariaDB Galera, do not support or rely on the XA transaction mechanism.
To use Keycloak without XA transaction support using the appropriate JDBC driver, enter the
following command:

bin/kc.[sh|bat] build --db=<vendor> --transaction-xa-enabled=false

Keycloak automatically chooses the appropriate JDBC driver for your vendor.

Setting JPA provider configuration option for
migrationStrategy
To setup the JPA migrationStrategy (manual/update/validate) you should setup JPA provider as
follows:

Setting the migration-strategy for the quarkus provider of the connections-jpa SPI

bin/kc.[sh|bat] start --spi-connections-jpa-legacy-migration-strategy=manual

If you want to get a SQL file for DB initialization, too, you have to add this additional SPI
initializeEmpty (true/false):

Setting the initialize-empty for the quarkus provider of the connections-jpa SPI

bin/kc.[sh|bat] start --spi-connections-jpa-legacy-initialize-empty=false

94

In the same way the migrationExport to point to a specific file and location:

Setting the migration-export for the quarkus provider of the connections-jpa SPI

bin/kc.[sh|bat] start --spi-connections-jpa-legacy-migration-export=<path>/<file.sql>

Relevant options

Type Default

db

The database vendor.

CLI: --db

Env: KC_DB

dev-file, dev-
mem, mariadb,
mssql, mysql,
oracle, postgres

dev-file

db-password

The password of the database user.

CLI: --db-password

Env: KC_DB_PASSWORD

db-pool-initial-size

The initial size of the connection pool.

CLI: --db-pool-initial-size

Env: KC_DB_POOL_INITIAL_SIZE

db-pool-max-size

The maximum size of the connection pool.

CLI: --db-pool-max-size

Env: KC_DB_POOL_MAX_SIZE

100

db-pool-min-size

The minimal size of the connection pool.

CLI: --db-pool-min-size

Env: KC_DB_POOL_MIN_SIZE

95

Type Default

db-schema

The database schema to be used.

CLI: --db-schema

Env: KC_DB_SCHEMA

db-url

The full database JDBC URL.

If not provided, a default URL is set based on the
selected database vendor. For instance, if using
'postgres', the default JDBC URL would be
'jdbc:postgresql://localhost/keycloak'.

CLI: --db-url

Env: KC_DB_URL

db-url-database

Sets the database name of the default JDBC URL of the
chosen vendor.

If the db-url option is set, this option is ignored.

CLI: --db-url-database

Env: KC_DB_URL_DATABASE

db-url-host

Sets the hostname of the default JDBC URL of the
chosen vendor.

If the db-url option is set, this option is ignored.

CLI: --db-url-host

Env: KC_DB_URL_HOST

db-url-port

Sets the port of the default JDBC URL of the chosen
vendor.

If the db-url option is set, this option is ignored.

CLI: --db-url-port

Env: KC_DB_URL_PORT

96

Type Default

db-url-properties

Sets the properties of the default JDBC URL of the
chosen vendor.

If the db-url option is set, this option is ignored.

CLI: --db-url-properties

Env: KC_DB_URL_PROPERTIES

db-username

The username of the database user.

CLI: --db-username

Env: KC_DB_USERNAME

transaction-xa-enabled

If set to false, Keycloak uses a non-XA datasource in
case the database does not support XA transactions.

CLI: --transaction-xa-enabled

Env: KC_TRANSACTION_XA_ENABLED

true, false true

97

Configuring the hostname

Server Endpoints
Keycloak exposes different endpoints to talk with applications as well as to allow accessing the
administration console. These endpoints can be categorized into three main groups:

• Frontend

• Backend

• Administration Console

The base URL for each group has an important impact on how tokens are issued and validated, on
how links are created for actions that require the user to be redirected to Keycloak (for example,
when resetting password through email links), and, most importantly, how applications will
discover these endpoints when fetching the OpenID Connect Discovery Document from
realms/{realm-name}/.well-known/openid-configuration.

Frontend

The frontend endpoints are those accessible through a public domain and usually related to
authentication/authorization flows that happen through the front-channel. For instance, when an
SPA wants to authenticate their users it redirects them to the authorization_endpoint so that users
can authenticate using their browsers through the front-channel.

By default, when the hostname settings are not set, the base URL for these endpoints is based on the
incoming request so that the HTTP scheme, host, port, and path, are the same from the request. The
default behavior also has a direct impact on how the server is going to issue tokens given that the
issuer is also based on the URL set to the frontend endpoints. If the hostname settings are not set,
the token issuer will also be based on the incoming request and also lack consistency if the client is
requesting tokens using different URLs.

When deploying to production you usually want a consistent URL for the frontend endpoints and
the token issuer regardless of how the request is constructed. In order to achieve this consistency,
you can set either the hostname or the hostname-url options.

Most of the time, it should be enough to set the hostname option in order to change only the host of
the frontend URLs:

bin/kc.[sh|bat] start --hostname=<host>

When using the hostname option the server is going to resolve the HTTP scheme, port, and path,
automatically so that:

• https scheme is used unless you set hostname-strict-https=false

• Use the standard HTTP ports (e.g.: 80 and 443) if a proxy is set or use the port you set to the
hostname-port option

98

However, if you want to set not only the host but also a scheme, port, and path, you can set the
hostname-url option:

bin/kc.[sh|bat] start --hostname-url=<scheme>://<host>:<port>/<path>

This option gives you more flexibility as you can set the different parts of the URL from a single
option. Note that the hostname and hostname-url are mutually exclusive.

Backend

The backend endpoints are those accessible through a public domain or through a private network.
They are used for a direct communication between the server and clients without any intermediary
but plain HTTP requests. For instance, after the user is authenticated an SPA wants to exchange the
code sent by the server with a set of tokens by sending a token request to token_endpoint.

By default, the URLs for backend endpoints are also based on the incoming request. To override this
behavior, set the hostname-strict-backchannel configuration option by entering this command:

bin/kc.[sh|bat] start --hostname=<value> --hostname-strict-backchannel=true

By setting the hostname-strict-backchannel option, the URLs for the backend endpoints are going to
be exactly the same as the frontend endpoints.

When all applications connected to Keycloak communicate through the public URL, set hostname-
strict-backchannel to true. Otherwise, leave this parameter as false to allow client-server
communication through a private network.

Administration Console

The server exposes the administration console and static resources using a specific URL.

By default, the URLs for the administration console are also based on the incoming request.
However, you can set a specific host or base URL if you want to restrict access to the administration
console using a specific URL. Similarly to how you set the frontend URLs, you can use the hostname-
admin and hostname-admin-url options to achieve that.

Most of the time, it should be enough to set the hostname-admin option in order to change only the
host of the administration console URLs:

bin/kc.[sh|bat] start --hostname-admin=<host>

However, if you want to set not only the host but also a scheme, port, and path, you can set the
hostname-admin-url option:

bin/kc.[sh|bat] start --hostname-admin-url=<scheme>://<host>:<port>/<path>

99

Note that the hostname-admin and hostname-admin-url are mutually exclusive.

To reduce attack surface, the administration endpoints for Keycloak and the Admin Console should
not be publicly accessible. Therefore, you can secure them by using a reverse proxy. For more
information about which paths to expose using a reverse proxy, see the Using a reverse proxy
Guide.

Example Scenarios
The following are more example scenarios and the corresponding commands for setting up a
hostname.

Note that the start command requires setting up TLS. The corresponding options are not shown for
example purposes. For more details, see Configuring TLS guide.

Exposing the server behind a TLS termination proxy

In this example, the server is running behind a TLS termination proxy and publicly available from
https://mykeycloak.

Configuration:

bin/kc.[sh|bat] start --hostname=mykeycloak --proxy-edge

Exposing the server without a proxy

In this example, the server is running without a proxy and exposed using a URL using HTTPS.

Keycloak configuration:

bin/kc.[sh|bat] start --hostname-url=https://mykeycloak

It is highly recommended using a TLS termination proxy in front of the server for security and
availability reasons. For more details, see the Using a reverse proxy guide.

Forcing backend endpoints to use the same URL the server is exposed

In this example, backend endpoints are exposed using the same URL used by the server so that
clients always fetch the same URL regardless of the origin of the request.

Keycloak configuration:

bin/kc.[sh|bat] start --hostname=mykeycloak --hostname-strict-backchannel=true

Exposing the server using a port other than the default ports

In this example, the server is accessible using a port other than the default ports.

100

https://mykeycloak

Keycloak configuration:

bin/kc.[sh|bat] start --hostname-url=https://mykeycloak:8989

Relevant options

Type Default

hostname

Hostname for the Keycloak server.

CLI: --hostname

Env: KC_HOSTNAME

hostname-admin

The hostname for accessing the administration console.

Use this option if you are exposing the administration
console using a hostname other than the value set to
the 'hostname' option.

CLI: --hostname-admin

Env: KC_HOSTNAME_ADMIN

hostname-admin-url

Set the base URL for accessing the administration
console, including scheme, host, port and path

CLI: --hostname-admin-url

Env: KC_HOSTNAME_ADMIN_URL

hostname-path

This should be set if proxy uses a different context-path
for Keycloak.

CLI: --hostname-path

Env: KC_HOSTNAME_PATH

101

Type Default

hostname-port

The port used by the proxy when exposing the
hostname.

Set this option if the proxy uses a port other than the
default HTTP and HTTPS ports.

CLI: --hostname-port

Env: KC_HOSTNAME_PORT

-1

hostname-strict

Disables dynamically resolving the hostname from
request headers.

Should always be set to true in production, unless
proxy verifies the Host header.

CLI: --hostname-strict

Env: KC_HOSTNAME_STRICT

true, false true

hostname-strict-backchannel

By default backchannel URLs are dynamically resolved
from request headers to allow internal and external
applications.

If all applications use the public URL this option
should be enabled.

CLI: --hostname-strict-backchannel

Env: KC_HOSTNAME_STRICT_BACKCHANNEL

true, false false

hostname-url

Set the base URL for frontend URLs, including scheme,
host, port and path.

CLI: --hostname-url

Env: KC_HOSTNAME_URL

102

Type Default

proxy

The proxy address forwarding mode if the server is
behind a reverse proxy.

CLI: --proxy

Env: KC_PROXY

none, edge,
reencrypt,
passthrough

none

103

Enabling Keycloak Health checks
Keycloak has built in support for health checks. This guide describes how to enable and use the
Keycloak health checks.

Keycloak Health checks
Keycloak exposed health endpoints are three:

• /health

• /health/live

• /health/ready

The result is returned in json format and it looks as follows:

{
 "status": "UP",
 "checks": []
}

Enabling the health checks
Is possible to enable the health checks using the build time option health-enabled:

bin/kc.[sh|bat] build --health-enabled=true

By default, no check is returned from the health endpoints.

Available Checks
The table below shows the available checks.

Check Description Requires Metrics

Database Returns the status of the
database connection pool.

Yes

For some checks, you’ll need to also enable metrics as indicated by the Requires Metrics column. To
enable metrics use the metrics-enabled option as follows:

bin/kc.[sh|bat] build --health-enabled=true --metrics-enabled=true

104

Relevant options

Type Default

health-enabled

If the server should expose health check endpoints.

If enabled, health checks are available at the '/health',
'/health/ready' and '/health/live' endpoints.

CLI: --health-enabled

Env: KC_HEALTH_ENABLED

true, false false

105

Importing and Exporting Realms
In this guide, you are going to understand the different approaches for importing and exporting
realms using JSON files.

Exporting a Realm to a Directory
To export a realm, you can use the export command. Your Keycloak server instance must not be
started when invoking this command.

bin/kc.[sh|bat] export --help

To export a realm to a directory, you can use the --dir <dir> option.

bin/kc.[sh|bat] export --dir <dir>

When exporting realms to a directory, the server is going to create separate files for each realm
being exported.

Configuring how users are exported

You are also able to configure how users are going to be exported by setting the --users <strategy>
option. The values available for this option are:

• different_files: Users export into different json files, depending on the maximum number of
users per file set by --users-per-file. This is the default value.

• skip: Skips exporting users.

• realm_file: Users will be exported to the same file as the realm settings. For a realm named
"foo", this would be "foo-realm.json" with realm data and users.

• same_file: All users are exported to one explicit file. So you will get two json files for a realm,
one with realm data and one with users.

If you are exporting users using the different_files strategy, you can set how many users per file
you want by setting the --users-per-file option. The default value is 50.

bin/kc.[sh|bat] export --dir <dir> --users different_files --users-per-file 100

Exporting a Realm to a File
To export a realm to a file, you can use the --file <file> option.

bin/kc.[sh|bat] export --file <file>

106

When exporting realms to a file, the server is going to use the same file to store the configuration
for all the realms being exported.

Exporting a specific realm
If you do not specify a specific realm to export, all realms are exported. To export a single realm,
you can use the --realm option as follows:

bin/kc.[sh|bat] export [--dir|--file] <path> --realm my-realm

Importing a Realm from a Directory
To import a realm, you can use the import command. Your Keycloak server instance must not be
started when invoking this command.

bin/kc.[sh|bat] import --help

After exporting a realm to a directory, you can use the --dir <dir> option to import the realm back
to the server as follows:

bin/kc.[sh|bat] import --dir <dir>

When importing realms using the import command, you are able to set if existing realms should be
skipped, or if they should be overridden with the new configuration. For that, you can set the
--override option as follows:

bin/kc.[sh|bat] import --dir <dir> --override false

By default, the --override option is set to true so that realms are always overridden with the new
configuration.

Importing a Realm from a File
To import a realm previously exported in a single file, you can use the --file <file> option as
follows:

bin/kc.[sh|bat] import --file <file>

Importing a Realm during Startup
You are also able to import realms when the server is starting by using the --import-realm option.

107

bin/kc.[sh|bat] start --import-realm

When you set the --import-realm option, the server is going to try to import any realm configuration
file from the data/import directory. Each file in this directory should contain a single realm
configuration. Only regular files using the .json extension are read from this directory, sub-
directories are ignored.

 For the published containers, the import directory is /opt/keycloak/data/import

If a realm already exists in the server, the import operation is skipped.

Using Environment Variables within the Realm Configuration Files

When importing a realm at startup, you are able to use placeholders to resolve values from
environment variables for any realm configuration.

Realm configuration using placeholders

{
 "realm": "${MY_REALM_NAME}",
 "enabled": true,
 ...
}

In the example above, the value set to the MY_REALM_NAME environment variable is going to be used to
set the realm property.

108

https://quay.io/keycloak/keycloak

Using Kubernetes secrets
Keycloak supports a file-based vault implementation for Kubernetes/OpenShift secrets. Mount
Kubernetes secrets into the Keycloak Container, and the data fields will be available in the mounted
folder with a flat-file structure.

Available integrations
You can use Kubernetes/OpenShift secrets for the following purposes:

• Obtain the SMTP Mail server Password

• Obtain the LDAP Bind Credential when using LDAP-based User Federation

• Obtain the OIDC identity providers Client Secret when integrating external identity providers

Enabling the vault
Enable the file based vault by building Keycloak using the following build option:

bin/kc.[sh|bat] build --vault=file

Setting the base directory to lookup secrets
Kubernetes/OpenShift secrets are basically mounted files. To configure a directory where these files
should be mounted, enter this command:

bin/kc.[sh|bat] start --vault-dir=/my/path

Realm-specific secret files
Kubernetes/OpenShift Secrets are used on a per-realm basis in Keycloak, which requires a naming
convention for the file in place:

${vault.<realmname>_<secretname>}

Using underscores in the Name

To process the secret correctly, you double all underscores in the <realmname> or the
<secretname>, separated by a single underscore.

Example

• Realm Name: sso_realm

• Desired Name: ldap_credential

109

• Resulting file Name:

sso__realm_ldap__credential

Note the doubled underscores between sso and realm and also between ldap and credential.

Example: Use an LDAP bind credential secret in the
Admin Console
Example setup

• A realm named secrettest

• A desired Name ldapBc for the bind Credential

• Resulting file name: secrettest_ldapBc

Usage in Admin Console

You can then use this secret from the Admin Console by using ${vault.ldapBc} as the value for the
Bind Credential when configuring your LDAP User federation.

Relevant options

Type Default

vault

Enables a vault provider.

CLI: --vault

Env: KC_VAULT

file, hashicorp

vault-dir

If set, secrets can be obtained by reading the content of
files within the given directory.

CLI: --vault-dir

Env: KC_VAULT_DIR

110

Using a reverse proxy
Distributed environments frequently require the use of a reverse proxy. For Keycloak, your choice
of proxy modes depends on the TLS termination in your environment.

Proxy modes
The following proxy modes are available:

edge

Enables communication through HTTP between the proxy and Keycloak. This mode is suitable
for deployments with a highly secure internal network where the reverse proxy keeps a secure
connection (HTTP over TLS) with clients while communicating with Keycloak using HTTP.

reencrypt

Requires communication through HTTPS between the proxy and Keycloak. This mode is suitable
for deployments where internal communication between the reverse proxy and Keycloak
should also be protected. Different keys and certificates are used on the reverse proxy as well as
on Keycloak.

passthrough

Enables communication through HTTP or HTTPS between the proxy and Keycloak. This mode is
suitable for deployments where the reverse proxy is not terminating TLS. The proxy instead is
forwarding requests to the Keycloak server so that secure connections between the server and
clients are based on the keys and certificates used by the Keycloak server.

Configure the proxy mode in Keycloak
To select the proxy mode, enter this command:

bin/kc.[sh|bat] start --proxy <mode>

Configure the reverse proxy
Some Keycloak features rely on the assumption that the remote address of the HTTP request
connecting to Keycloak is the real IP address of the clients machine.

When you have a reverse proxy or a load balancer in front of Keycloak, this might not be the case,
so please make sure your reverse proxy is configured correctly by performing these actions:

• Set the X-Forwarded-For, X-Forwarded-Proto, and X-Forwarded-Host HTTP headers.

To set these headers, consult the documentation for your reverse proxy.

Take extra precautions to ensure that the X-Forwarded-For header is set by your reverse proxy. If
this header is incorrectly configured, rogue clients can set this header and trick Keycloak into

111

thinking the client is connected from a different IP address than the actual address. This precaution
can be more critical if you do any deny or allow listing of IP addresses.

Trust the proxy to set hostname
By default, Keycloak needs to know under which hostname it will be called. If your reverse proxy is
configured to check for the correct hostname, you can set Keycloak to accept any hostname.

bin/kc.[sh|bat] start --proxy <mode> --hostname-strict=false

Exposing the administration console

By default, the administration console URLs are created solely based on the requests to resolve the
proper scheme, host name, and port. For instance, if you are using the edge proxy mode and your
proxy is misconfigured, backend requests from your TLS termination proxy are going to use plain
HTTP and potentially cause the administration console from being accessible because URLs are
going to be created using the http scheme and the proxy does not support plain HTTP.

In order to proper expose the administration console, you should make sure that your proxy is
setting the X-Forwarded-* headers herein mentioned in order to create URLs using the scheme, host
name, and port, being exposed by your proxy.

Exposed path recommendations

When using a reverse proxy, Keycloak only requires certain paths need to be exposed. The
following table shows the recommended paths to expose.

Keycloak Path Reverse Proxy Path Exposed Reason

/ - No When exposing all
paths, admin paths are
exposed unnecessarily.

/admin/ - No Exposed admin paths
lead to an unnecessary
attack vector.

/js/ - Yes (see note below) Access to keycloak.js
needed for "internal"
clients, e.g. the account
console

/welcome/ - No No need exists to
expose the welcome
page after initial
installation.

112

Keycloak Path Reverse Proxy Path Exposed Reason

/realms/ /realms/ Yes This path is needed to
work correctly, for
example, for OIDC
endpoints.

/resources/ /resources/ Yes This path is needed to
serve assets correctly. It
may be served from a
CDN instead of the
Keycloak path.

/robots.txt /robots.txt Yes Search engine rules

/metrics - No Exposed metrics lead to
an unnecessary attack
vector.

/health - No Exposed health checks
lead to an unnecessary
attack vector.

Note:

As it’s true that the js path is needed for internal clients like the account console,
it’s good practice to use keycloak.js from a JavaScript package manager like npm
or yarn for your external clients.

We assume you run Keycloak on the root path / on your reverse proxy/gateway’s public API. If not,
prefix the path with your desired one.

Enabling client certificate lookup

When the proxy is configured as a TLS termination proxy the client certificate information can be
forwarded to the server through specific HTTP request headers and then used to authenticate
clients. You are able to configure how the server is going to retrieve client certificate information
depending on the proxy you are using.

The server supports some of the most commons TLS termination proxies such as:

Proxy Provider

Apache HTTP Server apache

HAProxy haproxy

NGINX nginx

To configure how client certificates are retrieved from the requests you need to:

113

Enable the corresponding proxy provider

bin/kc.[sh|bat] build --spi-x509cert-lookup-provider=<provider>

Configure the HTTP headers

bin/kc.[sh|bat] start --spi-x509cert-lookup-<provider>-ssl-client-cert=SSL_CLIENT_CERT
--spi-x509cert-lookup-<provider>-ssl-cert-chain-prefix=CERT_CHAIN --spi-x509cert
-lookup-<provider>-certificate-chain-length=10

When configuring the HTTP headers, you need to make sure the values you are using correspond to
the name of the headers forwarded by the proxy with the client certificate information.

The available options for configuring a provider are:

Option Description

ssl-client-cert The name of the header holding the client
certificate

ssl-cert-chain-prefix The prefix of the headers holding additional
certificates in the chain and used to retrieve
individual certificates accordingly to the length
of the chain. For instance, a value CERT_CHAIN will
tell the server to load additional certificates
from headers CERT_CHAIN_0 to CERT_CHAIN_9 if
certificate-chain-length is set to 10.

certificate-chain-length The maximum length of the certificate chain.

trust-proxy-verification Enable trusting NGINX proxy certificate
verification, instead of forwarding the certificate
to keycloak and verifying it in keycloak.

Configuring the NGINX provider

The NGINX SSL/TLS module does not expose the client certificate chain. Keycloak’s NGINX
certificate lookup provider rebuilds it by using the Keycloak truststore.

If you are using this provider, please take a look at the Configuring a Truststore guide about how to
configure a Keycloak Truststore.

Relevant options

114

Type Default

proxy

The proxy address forwarding mode if the server is
behind a reverse proxy.

CLI: --proxy

Env: KC_PROXY

none, edge,
reencrypt,
passthrough

none

115

	Guides Keycloak Server
	Configuring Keycloak
	Configuration Sources for Keycloak
	Example: Configuring the db-url-host parameter.

	Configuration Format
	Example - Configure db-url-host on different configuration sources:
	Using environment variables for configuration values
	Configuring the server using a specific configuration file
	Using the command-line help
	Using raw Quarkus properties

	Starting Keycloak
	Starting Keycloak in development mode
	Starting Keycloak in production mode

	Setup of the initial admin user
	Optimize the Keycloak startup
	Create an optimized Keycloak build
	First step: Run a build explicitly
	Second step: Start Keycloak using --optimized

	Underlying concepts

	Configuring Keycloak for production
	TLS for secure communication
	The hostname for Keycloak
	Reverse proxy in a distributed environment
	Production grade database
	Support for Keycloak in a cluster
	Configure Keycloak Server with IPv6 or IPv4

	All configuration
	Cache
	Storage (Experimental)
	Database
	Transaction
	Feature
	Hostname
	HTTP/TLS
	Health
	Metrics
	Proxy
	Vault
	Logging

	Enabling and disabling features
	Enabling features
	Disabling features
	Supported features
	Disabled by default

	Preview features
	Deprecated features
	Relevant options

	Running Keycloak in a container
	Creating a customized and optimized container image
	Building your optimized Keycloak docker image
	Building the docker image
	Starting the optimized Keycloak docker image

	Exposing the container to a different port
	Trying Keycloak in development mode
	Running a standard keycloak container
	Provide initial admin credentials when running in a container
	Importing A Realm On Startup
	Relevant options

	All provider configuration
	authentication-sessions
	infinispan
	map

	ciba-auth-channel
	ciba-http-auth-channel

	connections-http-client
	default

	connections-jpa
	legacy

	dblock
	jpa

	events-listener
	email
	jboss-logging

	resource-encoding
	gzip

	sticky-session-encoder
	infinispan

	truststore
	file

	well-known
	openid-configuration

	Configuring TLS
	Configuring TLS in Keycloak
	Providing certificates in PEM format
	Providing a Java Keystore
	Setting the Keystore password

	Configuring TLS protocols
	Switching the HTTPS port
	Using a truststore
	Setting the truststore password

	Securing credentials
	Enabling mutual TLS
	Relevant options

	Configuring a Truststore
	Configuring the Keycloak Truststore
	Example of a truststore configuration

	Configuring distributed caches
	Enable distributed caching
	Configuring caches
	Cache types and defaults
	Configuring caches for availability
	Specify your own cache configuration file

	Transport stacks
	Available transport stacks
	Additional transport stacks
	Custom transport stacks
	Securing cache communication

	Relevant options

	Configuring logging
	Logging configuration
	Log levels
	Configuring the root log level
	Configuring category-specific log levels

	Enabling log handlers
	Console log handler
	Configuring the console log format
	Setting the logging format
	Configuring JSON or plain console logging
	Colors

	File logging
	Enable file logging
	Configuring the location and name of the log file
	Configuring the file handler format

	Centralized logging using GELF
	Enabling the GELF handler
	Configuring the GELF handler
	Example: Send logs to Graylog
	Starting the Graylog stack
	Creating a Graylog UDP Input
	Configure Keycloak to send logs using GELF
	Graylog: See the results

	Example Setup using the ELK Stack
	Enable the logstash GELF plugin and create a pipeline
	Starting the ELK stack
	Configuring Keycloak to send logs using GELF
	Kibana: See the results

	Configure a different log level for the GELF logger
	Configure additional key values

	Relevant options

	Configuring outgoing HTTP requests
	Client Configuration Command
	Proxy mappings for outgoing HTTP requests
	Proxy mappings using regular expressions
	Outgoing HTTPS request truststore

	Configuring providers
	Configuration option format
	Setting a provider configuration option
	Configuring a default provider
	Enabling and disabling a provider
	Installing and uninstalling a provider
	Using third-party dependencies
	References

	Configuring the database
	Supported databases
	Configuring a database
	Overriding default connection settings
	Configuring Unicode support for the database
	Configuring Unicode support for an Oracle database
	Unicode support for a Microsoft SQL Server database
	Configuring Unicode support for a MySQL database
	Configuring Unicode support for a PostgreSQL database

	Changing database locking timeout in a cluster configuration
	Using Database Vendors without XA transaction support
	Setting JPA provider configuration option for migrationStrategy
	Relevant options

	Configuring the hostname
	Server Endpoints
	Frontend
	Backend
	Administration Console

	Example Scenarios
	Exposing the server behind a TLS termination proxy
	Exposing the server without a proxy
	Forcing backend endpoints to use the same URL the server is exposed
	Exposing the server using a port other than the default ports

	Relevant options

	Enabling Keycloak Health checks
	Keycloak Health checks
	Enabling the health checks
	Available Checks
	Relevant options

	Importing and Exporting Realms
	Exporting a Realm to a Directory
	Configuring how users are exported

	Exporting a Realm to a File
	Exporting a specific realm
	Importing a Realm from a Directory
	Importing a Realm from a File
	Importing a Realm during Startup
	Using Environment Variables within the Realm Configuration Files

	Using Kubernetes secrets
	Available integrations
	Enabling the vault
	Setting the base directory to lookup secrets
	Realm-specific secret files
	Using underscores in the Name

	Example: Use an LDAP bind credential secret in the Admin Console
	Relevant options

	Using a reverse proxy
	Proxy modes
	Configure the proxy mode in Keycloak
	Configure the reverse proxy
	Trust the proxy to set hostname
	Exposing the administration console
	Exposed path recommendations
	Enabling client certificate lookup
	Configuring the NGINX provider

	Relevant options

